Автор работы: Пользователь скрыл имя, 16 Декабря 2012 в 22:24, доклад
Автоматизация различных технологических процессов, эффективное управление различными агрегатами, машинами, механизмами требуют многочисленных измерений разнообразных физических величин.
Если рассматривать датчики температуры для промышленного применения, то можно выделить их основные классы: кремниевые датчики температуры, биметаллические датчики, жидкостные и газовые термометры, термоиндикаторы, термисторы, термопары, термопреобразователи сопротивления, инфракрасные датчики.
Кремниевые датчики
Биметаллический датчик сделан из двух разнородных металлических пластин, скрепленных между собой. Разные металлы имеют различный температурный коэффициент расширения. Если соединенные в пластину металлы нагреть или охладить, то она изогнется, при этом замкнет (разомкнет) электрические контакты или переведет стрелку индикатора. Диапазон работы биметаллических датчиков -40…+550 0C. Используются для измерения поверхности твердых тел и температуры жидкостей. Основные области применения - автомобильная промышленность, системы отопления и нагрева воды.
Термоиндикаторы - это особые вещества, изменяющие свой цвет под воздействием температуры. Изменение цвета может быть обратимым и необратимым. Производятся в виде пленок.
2. Термопреобразователи сопротивления
Принцип действия термопреобразователей сопротивления (терморезисторов) основан на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры (рассмотрен ранее).
Платиновые терморезисторы предназначены для измерения температур в пределах от -260 до 1100 0С. Широкое распространение на практике получили более дешевые медные терморезисторы, имеющие линейную зависимость сопротивления от температуры.
Недостатком меди является небольшое ее удельное сопротивление и легкая окисляемость при высоких температурах, вследствие чего конечный предел применения медных термометров сопротивления ограничивается температурой 180 0C. По стабильности и воспроизводимости характеристик медные терморезисторы уступают платиновым. Никель используется в недорогих датчиках для измерения в диапазоне комнатных температур.
Полупроводниковые терморезисторы
(термисторы) имеют отрицательный
или положительный
Полупроводниковые датчики температуры обладают высокой стабильностью характеристик во времени и применяются для изменения температур в диапазоне от -100 до 200 0С.
Термоэлектрические
Соединенные между собой
концы термопары, погружаемые в
среду, температура которой
Uвых = Eт = С(Т1 - Т0),
где С - коэффициент, зависящий от материала проводников термопары.
Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 0С и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от -200 до 2200 0С.
Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.
Термопары имеют следующие преимущества: простота изготовления и надёжность в эксплуатации, дешевизна, отсутствие источников питания и возможность измерений в большом диапазоне температур.
Наряду с этим термопарам
свойственны и некоторые недост
Инфракрасные датчики (пирометры) - используют энергию излучения нагретых тел, что позволяет измерять температуру поверхности на расстоянии. Пирометры делятся на радиационные, яркостные и цветовые.
Радиационные пирометры используются для измерения температуры от 20 до 25000С, причем прибор измеряет интегральную интенсивность излучения реального объекта.
Яркостные (оптические) пирометры используются для измерения температур от 500 до 4000 0С. Они основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя (фотометрической лампы).
Цветовые пирометры основаны
на измерении отношения
Пирометры позволяют измерять температуру в труднодоступных местах и температуру движущихся объектов, высокие температуры, где другие датчики уже не работают.
3. Кварцевые термопреобразователи
Для измерения температур от - 80 до 250 0С часто используются так называемые кварцевые термопреобразователи, использующие зависимость собственной частоты кварцевого элемента от температуры. Работа данных датчиков основана на том, что зависимость частоты преобразователя от температуры и линейность функции преобразования изменяются в зависимости от ориентации среза относительно осей кристалла кварца. Данные датчики широко используются в цифровых термометрах.
Пьезоэлектрические датчики
Действие пьезоэлектрических датчиков основано на использовании пьезоэлектрического эффекта (пьезоэффекта), заключающегося в том, что при сжатии или растяжении некоторых кристаллов на их гранях появляется электрический заряд, величина которого пропорциональна действующей силе.
Пьезоэффект обратим, т.е. приложенное электрическое напряжение вызывает деформацию пьезоэлектрического образца - сжатие или растяжение его соответственно знаку приложенного напряжения. Это явление, называемое обратным пьезоэффектом, используется для возбуждения и приема акустических колебаний звуковой и ультразвуковой частоты. Используются для измерения сил, давления, вибрации и т.д.
Оптические (фотоэлектрические) датчики
Различают аналоговые и
Датчики дискретного типа изменяют выходное состояние на противоположное при достижении заданного значения освещенности.
Фотоэлектрические датчики могут быть применены практически во всех отраслях промышленности. Датчики дискретного действия используются как своеобразные бесконтактные выключатели для подсчета, обнаружения, позиционирования и других задач на любой технологической линии.
Оптический бесконтактный датчик, регистрирует изменение светового потока в контролируемой области, связанное с изменением положения в пространстве каких-либо движущихся частей механизмов и машин, отсутствия или присутствия объектов. Благодаря большим расстояниям срабатывания оптические бесконтактные датчики нашли широкое применение в промышленности и не только.
Оптический бесконтактный датчик состоит из двух функциональных узлов, приемника и излучателя. Данные узлы могут быть выполнены как в одном корпусе, так и в различных корпусах.
По методу обнаружения
объекта фотоэлектрические
1) пересечение луча - в этом методе передатчик и приемник разделены по разным корпусам, что позволяет устанавливать их напротив друг друга на рабочем расстоянии. Принцип работы основан на том, что передатчик постоянно посылает световой луч, который принимает приемник. Если световой сигнал датчика прекращается, в следствии перекрытия сторонним объектом, приемник немедленно реагирует меняя состояние выхода.
2) отражение от рефлектора - в этом методе приемник и передатчик датчика находятся в одном корпусе. Напротив датчика устанавливается рефлектор (отражатель). Датчики с рефлектором устроены так, что благодаря поляризационному фильтру они воспринимают отражение только от рефлектора. Это рефлекторы, которые работают по принципу двойного отражения. Выбор подходящего рефлектора определяется требуемым расстоянием и монтажными возможностями. Посылаемый передатчиком световой сигнал отражаясь от рефлектора попадает в приемник датчика. Если световой сигнал прекращается, приемник немедленно реагирует, меняя состояние выхода.
3) отражение от объекта - в этом методе приемник и передатчик датчика находятся в одном корпусе. Во время рабочего состояния датчика все объекты, попадающие в его рабочую зону, становятся своеобразными рефлекторами. Как только световой луч отразившись от объекта попадает на приемник датчика, тот немедленно реагирует, меняя состояние выхода.
4) фиксированное отражение от объекта - принцип действия датчика такой же как и у «отражение от объекта» но более чутко реагирующий на отклонение от настройки на объект. Например, возможно детектирование вздутой пробки на бутылке с кефиром, неполное наполнение вакуумной упаковки с продуктами и т.д.
По своему назначению фотодатчики делятся на две основные группы: датчики общего применения и специальные датчики. К специальным, относятся типы датчиков, предназначенные для решения более узкого круга задач. К примеру, обнаружение цветной метки на объекте, обнаружение контрастной границы, наличие этикетки на прозрачной упаковке и т.д.
Задача датчика обнаружить объект на расстоянии. Это расстояние варьируется в пределах 0,3 мм-50 м, в зависимости от выбранного типа датчика и метода обнаружения.
Микроволновые датчики
На смену кнопочно-релейным пультам приходят микропроцессорные автоматические системы управления технологическим процессом (АСУ ТП) высочайшей производительности и надежности, датчики оснащаются цифровыми интерфейсами связи, однако это не всегда приводит к повышению общей надежности системы и достоверности ее работы. Причина заключается в том, что сами принципы действия большинства известных типов датчиков накладывают жесткие ограничения на условия, в которых они могут использоваться.
Например, для слежения за скоростью движения промышленных механизмов широко применяются бесконтактные (емкостные и индуктивные), а также тахогенераторные устройства контроля скорости (УКС). Тахогенераторные УКС имеют механическую связь с движущимся объектом, а зона чувствительности бесконтактных приборов не превышает нескольких сантиметров.
Все это не только создает неудобства при монтаже датчиков, но и существенно затрудняет использование этих приборов в условиях пыли, которая налипает на рабочие поверхности, вызывая ложные срабатывания. Перечисленные типы датчиков не способны напрямую контролировать объект (например, ленту конвейера) - они настраиваются на движение роликов, крыльчаток, натяжных барабанов и т.д. Выходные сигналы некоторых приборов настолько слабы, что лежат ниже уровня промышленных помех от работы мощных электрических машин.
Аналогичные трудности возникают при использовании традиционных сигнализаторов уровня - датчиков наличия сыпучего продукта. Такие устройства необходимы для своевременного отключения подачи сырья в производственные емкости. К ложным срабатываниям приводит не только налипание и пыль, но и прикосновение потока продукта при его поступлении в бункер. В неотапливаемых помещениях на работу датчиков влияет окружающая температура. Ложные срабатывания сигнализаторов вызывают частые остановки и запуски нагруженного технологического оборудования - основную причину его аварий, приводят к завалам, обрыву конвейеров, возникновению пожаро- и взрывоопасных ситуаций.
Указанные проблемы привели
к разработке принципиально новых
типов приборов - радиолокационных
датчиков контроля скорости, датчиков
движения и подпора, работа которых
основана на взаимодействии контролируемого
объекта с радиосигналом
Использование микроволновых методов контроля за состоянием технологического оборудования позволяет полностью избавиться от недостатков датчиков традиционных типов.
Отличительными особенностями этих устройств являются:
- отсутствие механического и электрического контакта с объектом (средой), расстояние от датчика до объекта может составлять несколько метров;
- непосредственный контроль объекта (транспортерной ленты, цепи) а не их приводов, натяжных барабанов и т.д.;
- малое энергопотребление;
- нечувствительность к налипанию продукта за счет больших рабочих расстояний;
- высокая помехоустойчивость и направленность действия;
- разовая настройка на весь срок службы;
- высокая надежность, безопасность, отсутствие ионизирующих излучений.
Принцип действия датчика основан на изменении частоты радиосигнала, отраженного от движущегося объекта. Это явление («эффект Допплера») широко используется в радиолокационных системах для дистанционного измерения скорости. Движущийся объект вызывает появление электрического сигнала на выходе микроволнового приемо-передающего модуля.