Автор работы: Пользователь скрыл имя, 15 Мая 2014 в 07:35, реферат
Защитное экранирование предназначено для ослабления физических полей электрической, магнитной и электромагнитной природы. Защитные экраны позволяют значительно уменьшить проникновение или полностью исключить воздействие электромагнитных полей на конструктивные элементы оборудования, электронную аппаратуру, измерительные приборы, кабели, помещения и здания энергетических объектов. Также, благодаря эффективному экранированию электрических и электронных технических средств можно подавить любые электромагнитные помехи, исходящие из них в сеть или в окружающее пространство.
Защитное экранирование предназначено для ослабления физических полей электрической, магнитной и электромагнитной природы. Защитные экраны позволяют значительно уменьшить проникновение или полностью исключить воздействие электромагнитных полей на конструктивные элементы оборудования, электронную аппаратуру, измерительные приборы, кабели, помещения и здания энергетических объектов. Также, благодаря эффективному экранированию электрических и электронных технических средств можно подавить любые электромагнитные помехи, исходящие из них в сеть или в окружающее пространство.
По классической схеме защитный экран размещается между источником помехи и объектом, предназначенным для экранирования. Благодаря экранированию снижаются значения напряженности электромагнитного поля: от Е0 и Н0 непосредственно перед экраном до E1 и H1 за ним (См. Рис.1). Физическая сущность защитного экранирования объясняется созданием на поверхности экрана заряда или индуцированного тока, которые являются источниками полей, противодействующих существующим электромагнитным полям. Что эквивалентно увеличению расстояния между источником и приёмником помехи. На эффективность защитного экранирования влияют следующие факторы:
В дальнейшем при проведении расчётов будем исходить из положения, что экранирование осуществляется за счёт следующих факторов:
Рис. 1. Экранирование токовых контуров
для защиты от воздействия электрических
и магнитных полей, расположенных вне
контура:
а – принципиальная
схема расположения токовых контуров
и защитного экрана S;
б – условная граница между условиями
для ближнего и дальнего поля.
Результатирующий
коэффициент затухания (дБ) можно вычислить
по формулам:
Общий коэффициент
затухания состоит из двух компонентов:
В вышеприведённых
расчётах не учитываются многочисленные
отражения от экрана и стен помещения.
Для определения существенных взаимосвязей
между расчётными коэффициентами затухания,
свойствами магнитного поля, геометрическими
размерами и характеристиками материала
экрана следует использовать полное сопротивление.
В зависимости от расстояния Х между приёмником
помехи и её источником (Рис. 1 а) и частоты
f в каждой из областей (Рис. 1 б), для нахождения
коэффициентов затухания aSА и aSR можно применять
следующие выражения:
для магнитного поля в ближней зоне
для электрического поля в ближней зоне
для электрического поля в дальней зоне
коэффициент поглощения для каждой зоны равен
где
и
– относительная магнитная проницаемость
материала и его электропроводность, тождественная
коэффициенту электропроводности меди
(
= 5,8 •107 См/м);
fб = 1 Гц – базовая частота;
d – толщина защитного экрана, отнесенная
к d6 = 1 мм; хб = 1 м.
Выражения, находящиеся
в квадратных скобках формул (1.4) …(1.7),
связывают между собой свойства материала
и толщину экрана с коэффициентом затухания.
При f = 1 Гц ординаты функций (1.4) …(1.7) можно
определить по выражениям для нахождения
аSR и аSA. Зависимость между общим коэффициентом aS и частотой,
при воздействии магнитного поля в ближней
зоне, продемонстрирована на Рис.2. Данную
зависимость можно найти при помощи суммирования
значений aSR и aSА в соответствии
с формулой (1.3). Зависимости aSА, aSR и aS от частоты
для дальней зоны и для ближней зоны, определяемые
по выражениям (1.6) и (1.7), представлены на
Рис. 3. Необходимо отметить, что снижение
коэффициента aSR для ближней
зоны составляет 30 дБ (при увеличении частоты
в 10 раз).
Ориентировочная эффективность защитных
экранов может оцениваться в следующем
порядке:
Следует помнить, что эффективность экранирования энергообъектов связана с состоянием стенки экрана. Наличие различных дефектов (трещины, раковины, неоднородности и пр.) или технологических отверстий (проёмы для ввода кабелей и проводов, отверстия для вентиляции и обслуживания) снижает защитные свойства экрана. Кроме того, внутри экранированных устройств и помещений могут возникать резонансные эффекты (практически любой корпус прибора с токопроводящими стенками в первом приближении можно рассматривать в качестве объёмного резонатора).
Рис. 2. Принципиальная схема, отражающая зависимости коэффициентов (1), (2) и (3) от частоты магнитного поля (f) в пределах ближней зоны
Рис. 3. Принципиальная схема, отражающая зависимости между коэффициентами затухания и частотой электромагнитного поля в пределах дальней зоны и для электрического поля в пределах ближней зоны:
1 –
.
2 –
.
3 –
для электромагнитного поля в пределах
дальней зоны (1.6).
4 –
для электрического поля в пределах
ближней зоны (1.5).
Для качественного экранирования применяются ферромагнитные (сплавы железа) и немагнитные металлы (медь). Защитные экраны, изготовленные на основе ферромагнитных материалов ( >>1, <1), по эффективности ослабления электрического поля при низких частотах уступают экранам из немагнитных металлов, однако позволяют уменьшать постоянные магнитные поля. При увеличении частоты воздействующего поля показатели демпфирования в отношении электрических и магнитных полей улучшаются [см. (1.7) и Рис. 2 и 3]. Например, обычные здания и другие крупные строительные сооружения даже без применения специальной защиты уменьшают внешние поля на 6 …10 дБ, а железобетонные конструкции с приваренной стальной арматурой обеспечивают снижение воздействия внешних электромагнитных полей до 25 …30 дБ. Немагнитные материалы ( = 1, = 0,6 ÷ 1) создают экранирующий эффект за счет магнитных полей, образуемых вихревыми токами. Постоянное магнитное поле практически не экранируется, а низкочастотное переменное поле ослабляется в незначительной степени [см. (1.4) и Рис. 2.]. Между тем подобные экраны отлично демпфируют электрические поля [см. (1.5), (1.6) и Рис. 3].
В настоящее время используются различные материалы и устройства для экранирования, поставляемые в виде пластин, лент, оплёток и в других формах:
Чтобы обеспечить высокие экранирующие свойства корпусов оборудования и технологических помещений выполняется уплотнение стыков, проёмов, щелей и других мест, через которые может пройти высокочастотное излучение. Качественные уплотнения гарантируют непрерывность вихревых токов от электромагнитных полей. Для изготовления уплотняющих элементов применяются высокотехнологичные материалы, которые обладают такими свойствами, как:
Чаще всего используются следующие виды уплотняющих изделий:
Металлические корпуса электронных приборов и аппаратуры создают некоторую защиту от внешних помех электромагнитной природы. Однако наличие локальных неоднородностей в защитной оболочке (швы, отверстия и др.) неизбежно снижает экранирующий эффект. Поэтому, для обеспечения условий электромагнитной совместимости следует устранить все существенные недостатки в конструкции технических средств. Для этого применяют непрерывное гальваническое соединение стенок с использованием уплотнений в виде плетенных металлических прокладок. Контактные поверхности приборных шкафов обладают непрерывными коррозионно-стойкими свойствами. Прижатие дверей осуществляется с помощью пружинных контактов из особой бериллиевой бронзы. Благодаря специальной системе по всему периметру обеспечивается одинаковая сила прижатия пружин. Для отвода из шкафов лишнего тепла предусмотрены специальные отверстия или жалюзи в стенках. Для электрического соединения со всеми внешними техническими устройствами используются только разъёмы. При грамотном экранировании обеспечивается коэффициент затухания от 40 до 100 дБ в частотном диапазоне 30 … 1 000 МГц. Полноценное экранирование электронных приборов, имеющих пластмассовые корпусные детали (персональные компьютеры, экраны, мониторы, устройства для радиосвязи, контрольно-измерительные приборы и др.), обеспечивается за счёт металлизации поверхности корпусных элементов или включением металлических нитей в связующий материал. Создание условий для электромагнитной совместимости технических средств и оборудования, отсутствие электромагнитных помех при проведении испытаний (измерений) приборов и аппаратуры, обеспечение надёжности данных при их передаче и хранении – в этих и в других случаях требуется комплексное электромагнитное экранирование помещений и зданий. Чаще всего защитное экранирование применяется для следующих объектов:
При использовании экранирующих средств в вычислительных центрах обеспечивается как обычная защита электронно-вычислительной техники от воздействия электромагнитных помех, так и защита от промышленного шпионажа и утечек конфиденциальной (секретной) информации. В техническом плане экранирование помещений заключается в создании однородной проводящей оболочки, которая будет эффективно отражать электромагнитное излучение. Современные технические средства для экранирования помещений изготавливаются по модульному принципу.
Для создания полноценной защиты предназначены следующие элементы:
При соблюдении правил экранирования помещений можно обеспечить отличный коэффициент затухания электромагнитных помех, достигающий порядка 80 …100 дБ в гигагерцовом частотном диапазоне. В соответствии с требованиями стандартов безопасности (прежде всего, защита персонала энергообъектов от напряжения прикосновения) корпусные элементы и защитные экраны заземляются в строго установленных точках.
Для уменьшения воздействий высокочастотных помех на кабели и провода, для снижения электромагнитных излучений от кабелей и проводов, а также для обеспечения развязки проводов с высокой чувствительностью к помехам и содержащих помехи (при близком расположении) используются экраны для кабелей.