Проектирование беспроводных систем

Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 14:27, курсовая работа

Описание работы

Таким образом, с появлением прототипа WiMAX-сертифицированных систем наметилась тенденция вытеснения с рынка систем WLL и отчасти LMDS. Хотя они останутся, поскольку занимают частотный диапазон выше 11 ГГц и имеют большой резерв именно в качестве распределительных систем. Широкополосные беспроводные сети передачи информации становятся одним из основных направлений развития телекоммуникационной индустрии. А для стран, в которых большая территория сочетается с невысокой плотностью населения, беспроводные сети имеют особое значение. Это особо важно для Российской Федерации, с нашей необъятной территорией и значительным разбросом населения, особенно в сельской местности.

Содержание работы

Введение 5
1. Обзор современных систем беспроводного абонентского доступа 8
1.1 Сравнение ключевых технологий WiMAX и HSPA 12
1.2 Сравнение ключевых технологий WiMAX и LTE 13
1.3 Сравнение ключевых технологий WiMAX и Wi-Fi. 16
2. Широкополосный мобильный доступ под управлением стандарта IEEE 802.16 18
2.1 Стандарт 802.16: стек протоколов. 18
2.2 Стандарт 802.16: физический уровень 19
2.3 Стандарт 802.16 протокол подуровня МАС 22
2.4 Стандарт 802.16: структура кадра 24
3. Особенности применения модемов OFDM и многостанционного доступа OFDMA 27
3.1 Особенности применения модемов OFDM. 27
3.2 MESH-сеть 36
3.3 Особенности применения многостанционного доступа OFDMA 40
3.4 Поддержка адаптивных антенных систем 49
4. Услуги и архитектура сетей Mobile WiMAX 53
4.1 Услуги сетей технологии Mobile WiMAX. 53
4.2 Принципы построения сетей WiMAX 54
4.3 Решения WiMAX с усовершенствованными функциями и рабочими характеристиками. 61
5. Разработка сети WIMAX для реализации услуг и широкополосного доступа в инернете 63
5.1 Выбор характеристик радиоинтерфейса 63
5.2 Расчет частотных каналов 65
5.3 Определения размерности кластера 66
5.4 Расчет частотных каналов, которые используются для обслуживания абонентов БС 69
5.5 Расчет допустимой нагрузки БС 69
5.6 Расчет числа абонентов, обслуживающихся одной БС 70
5.7 Расчет количества БС 70
6. Проверочный расчет помехоустойчивости для обеспечения работы сети 71
6.1 Расчет величины защитного расстояния 71
6.2 Расчет уровня сигнала на входе приемника. 71
6.3 Расчет вероятности ошибки 71
6.4 Расчет эффективности использования радиоспектра 72
7. Выбор оборудования базовых абонентских станций 73
7.1 Выбор оборудования абонентских станций 73
7.2 Выбор оборудования базовых станций 74
7.3 Установка базовых станций 77
8. Безопасность жизнедеятельности при развертывании сети 81
8.1 Особенности географического положения г. Южно-Сахалинск Сахалинской области. 81
8.2 Воздействие радиочастотного поля на организм человека 81
9. Технико-экономическое обоснование проекта 86
9.1 Краткая характеристика проекта 86
9.2 Трудоемкость выполняемых работ 86
9.3 Оценка экономической эффективности внедрения проектируемой информационной сети 93
9.4 Основные технико-экономические показатели проекта 95
Заключение 97
Список использованных источников 99

Файлы: 1 файл

Диплом.docx

— 1.35 Мб (Скачать файл)

Рисунок 2.3 - Фазовые диаграммы применяемых методов

Стандарт 802.16 обеспечивает гибкость распределения полосы пропускания. Применяются две схемы модуляции: FDD (дуплексная связь с частотным  разделением) и ТDD (дуплексная связь с временным разделением). Последний метод показан на рисунок 2.4. Базовая станция периодически передает кадры, разделенные Иа временные интервалы. Первая часть временных интервалов отводится под входящий трафик. Затем следует защитный интервал (разделитель), позволяющий станциям переключать режимы приема и передачи, а за ним - интервалы исходящего трафика. Число отводимых тактов может динамически меняться, что позволяет подстроить пропускную способность под трафик каждого из направлений.

Рисунок 2.4 - Дуплексная связь с временным разделением: кадры и временные интервалы

Входящий трафик разбивается на временные интервалы базовой  станцией. Она полностью контролирует это направление передачи. Исходящий  трафик от абонентов управляется  более сложным образом и зависит  от требуемого качества обслуживания. Мы еще вернемся к распределению  временных интервалов, когда будем  обсуждать подуровень МАС.

Еще одним интересным свойством  физического уровня является его  способность упаковывать несколько  соседних кадров МАС в одну физическую передачу. Это дает возможность повысить эффективность распределения спектра  путем уменьшения числа различных  преамбул и заголовков, столь любимых  физическим уровнем.

Для непосредственного исправления  ошибок на физическом уровне используется код Хэмминга. Все сетевые технологии просто полагаются на контрольные суммы  и обнаруживают ошибки с их помощью, запрашивая повторную передачу испорченных  фрагментов. Но при широкополосной беспроводной связи на больших расстояниях  возникает много ошибок, что их обработкой приходится заниматься физическому  уровню, хотя на более высоких уровнях  и применяется метод контрольных  сумм. Основная задача коррекции ошибок на физическом уровне состоит в том, чтобы заставить канал выглядеть  лучше, чем он есть на самом деле (точно так же компакт-диски кажутся  столь надежными носителями только лишь благодаря тому, что больше половины суммарного числа бит отводится под исправление ошибок на физическом уровне).

2.3 Стандарт 802.16 протокол подуровня  МАС

Уровень передачи данных разделен на три подуровня, как показано на рисунке 2.5.

Кадры МАС всегда занимают целое  число временных интервалов физического  уровня. Каждый кадр разбит на части, первые две из которых содержат карту  распределения интервалов между  входящим и исходящим трафиком. Там  находится информация о том, что  передается в каждом такте, а также  о том, какие такты свободны. Карта  распределения входящего потока содержит также разнообразные системные  параметры, которые важны для  станций, только что подключившихся к эфиру.

Канал входящего трафика состоит  из базовая станция, которая определяет, что разместить в каждой части кадра. Исходящий канал имеет конкурирующие между собой станции, желающие получить доступ к нему. Его распределение тесно связано с вопросом качества обслуживания. Определены четыре класса сервисов:

1). Сервис с постоянной битовой скоростью;

2). Сервис реального времени с переменной битовой скоростью;

3). Сервис, работающий не в реальном масштабе времени, с переменной битовой скоростью;

4). Сервис с обязательством приложения максимальных усилий по предоставлению услуг.

Все предоставляемые стандартом 802.16 сервисы ориентированы на соединение, и каждое соединение получает доступ к одному из приведенных ранее  классов сервиса.

Сервис с постоянной битовой  скоростью предназначен для передачи несжатой речи, такой, какая передается по каналу Т1. Здесь требуется передавать предопределенный объем данных в предопределенные временные интервалы. Это реализуется путем назначения каждому соединению такого типа своих интервалов. После того как канал оказывается распределенным, доступ к временным интервалам осуществляется автоматически, и нет необходимости запрашивать каждый из них по отдельности.

Сервис реального масштаба времени  с переменной битовой скоростью  применяется при передаче сжатых мультимедийных данных и других программных приложений реального времени. Необходимая в каждый момент времени пропускная способность может меняться. Та или иная полоса выделяется базовой станцией, которая опрашивает через определенные промежутки времени абонента с целью выявления необходимой на текущий момент ширины канала.

Сервис, работающий не в реальном масштабе времени, с переменной битовой скоростью  предназначен для интенсивного трафика  — например, для передачи файлов большого объема. Здесь базовая станция  тоже опрашивает абонентов довольно часто, но не в строго установленные  моменты времени. Абонент, работающий с постоянной битовой скоростью, может установить в единицу один из специальных битов своего кадра, тем самым предлагая базовой  станции опросить его (это означает, что у абонента появились данные, которые нужно передать с новой  битовой скоростью)..

Сервис с обязательством приложения максимальных усилий используется для  всех остальных типов передачи. Никаких  опросов здесь нет, а станции, желающие захватить канал, должны соперничать  с другими станциями, которым  требуется тот же класс сервиса. Запрос пропускной способности осуществляется во временных интервалах, помеченных в карте распределения исходящего потока как доступные для конкуренции. Если запрос прошел удачно, это будет  отмечено в следующей карте распределения  входящего потока. В противном  случае абоненты-неудачники должны продолжать борьбу. Для минимизации числа  коллизий используется взятый из Еsегпеt; алгоритм двоичного экспоненциального отката.

Стандартом определены две формы  распределения пропускной способности: для станции и для соединения. В первом случае абонентская станция  собирает вместе все требования своих  абонентов (например, компьютеров, принадлежащих жильцам здания) и осуществляет коллективный запрос. Получив полосу, она распределяет ее между пользователями по своему усмотрению. В последнем случае базовая станция работает с каждым соединением отдельно.

2.4 Стандарт 802.16: структура  кадра

Все кадры подуровня управления доступом к среде (МАС) начинаются с  одного и того же заголовка. За ним  следует (или не следует) поле данных, и кончается кадр также необязательным полем контрольной суммы. Это  показано на рис. 2.5 Поле данных отсутствует в служебных кадрах, которые предназначены, например, для запроса временных интервалов. Контрольная сумма тоже является необязательной благодаря тому, что исправление ошибок производится на физическом уровне и никогда не бывает попыток повторно переслать кадры информации, передающейся в реальном масштабе времени.

Рассмотрим поля заголовка (рисунок  2,5, а). Бит ЕС говорит о том, шифруется ли поле данных. Поле Тип указывает тип кадра (в частности, сообщает о том, пакуется ли кадр и есть ли фрагментация). Поле С1 указывает на наличие либо отсутствие поля финальной контрольной суммы. Поле ЕК сообщает, какой из ключей шифрования используется (если он вообще используется). В поле Длина содержится информация о полной длине кадра, включая заголовок. Идентификатор соединения сообщает, какому из соединений принадлежит кадр. В конце заголовка имеется поле Контрольная сумма заголовка, значение которого вычисляется с помощью полинома х+ х+ х + 1.

Рисунок 2.5 - Обычный кадр (а); кадр запроса канала (б)

На рисунке 2.5, б показан другой тип кадра. Это кадр запроса канала. Он начинается с единичного, а не нулевого бита и в целом напоминает заголовок обычного Кадра, за исключением второго и третьего байтов, которые составляют 16-битный номер, говорящий о требуемой полосе для передачи соответствующего числа байтов. В кадре запроса канала отсутствует поле данных, нет и контрольной суммы всего кадра.

Сети 802.16 могут охватывать целые  районы городов, и расстояния при  этом исчисляются километрами. Следовательно, получаемый станциями сигнал может  быть разной мощности в зависимости  от их удаленности от передатчика. Эти  отклонения влияют на соотношение сигнал/шум, что, в свою очередь, приводит к использованию  нескольких схем модуляции.

В каждой ячейке широкополосной региональной сети может быть намного больше пользователей, чем в обычной ячейке 802.11, и  при этом каждому пользователю предоставляется  гораздо более высокая пропускная способность, чем пользователю беспроводной ЛВС. Нелицензированной (15М) полосы частот недостаточно для такой нагрузки, поэтому сети 802.16 работают в высокочастотном  диапазоне 10-66 ГГц.

Сети 802.11 поддерживают передачу информации в реальном времени (в режиме РСР), но вообще-то они не предназначены  для телефонной связи и большого мультимедийного трафика. Стандарт 802.16, напротив, ориентирован на поддержку подобных приложений, поскольку он предназначен как для обывателей, так и для деловых людей.

  1. Особенности применения модемов OFDM и многостанционного доступа OFDMA

На физическом уровне стандарт IEEE 802.16 предусматривает три принципиально  различных метода передачи данных: метод модуляции одной несущей (SC, в диапазоне ниже 11 ГГц), метод  модуляции посредством ортогональных  несущих OFDM (orthogonal frequency division multiplexing) и метод мультиплексирования (множественного доступа) посредством ортогональных несущих OFDMA (orthogonal frequency division multiple access).

3.1 Особенности применения  модемов OFDM.

Режим OFDM – это метод модуляции  потока данных в одном частотном  канале (шириной 1–2 МГц и более) с  центральной частотой fc. Деление же на каналы, как и в случае SC – частотное. Напомним, что при модуляции данных посредством ортогональных несущих в частотном канале выделяются N поднесущих:

 

где: k– целое число из диапазона [6 N/2, N/2] (в данном случае k ≠ 0). Расстояние между ортогональными несущими.

 

где Tb – длительность передачи данных в символе.

Помимо данных OFDM6символ включает защитный интервал длительностью Tg, так что общая длительность OFDM – символа

 

Защитный интервал представляет собой  копию оконечного фрагмента символа. Его длительность Tg может составлять 1/4, 1/8, 1/16 и 1/32 от Tb.

Каждая поднесущая модулируется независимо посредством квадратурной амплитудной модуляции.

Рисунок 3.1 - OFDM-символ

Общий сигнал вычисляется методом  обратного быстрого преобразования Фурье (ОБПФ) как комплексное представление  удобно, поскольку генерация радиосигнала происходит с помощью квадратурного  модулятора в соответствии с выражением

(3.4)

где: - комплексное представление символа квадратной модуляции (QAM – символа)

Для работы алгоритмов БПФ/ОБПФ желательно, чтобы количество точек соответствовало 2 . Поэтому число несущих выбирают равным минимальному числу NFFT = 2 , превосходящему N. В режиме OFDM стандарта IEEE 802.16 N = 200, соответственно NFFT = 256. Из них 55 ( k = 6128…6101 и 101…127) образуют защитный интервал на границах частотного диапазона канала. Центральная частота канала ( k= 0) и частоты защитных интервалов не используются (т.е. амплитуды соответствующих им сигналов равны нулю). Из остальных 200 несущих восемь частот – пилотные (с индексами ±88, ±63, ±38, ±13), остальные разбиты на 16 подканалов по 12 несущих в каждом, причем в одном подканале частоты расположены не подряд. Например, подканал 1 составляют несущие с индексами -100, -99, -98, -37, -36, -35, 1, 2, 3, 64, 65, 66. Деление на подканалы необходимо, поскольку в режиме WirelessMAN-OFDM предусмотрена (опционально) возможность работы не во всех 16, а в одном, двух, четырех и восьми подканалах – некий прообраз схемы множественного доступа OFDMA. Для этого каждый подканал и каждая группа подканалов имеют свой индекс (от 0 до 31).

Длительность полезной части Tb OFDM6символа зависит от ширины полосы канала BW и системной тактовой частоты (частоты дискретизации) Fs;

 

 

 Соотношение Fs/ BW = n нормируется, и в зависимости от ширины полосы канала принимает значения 86/75 (BW кратно 1,5 МГц), 144/125 (BW кратно 1,25 МГц), 316/275 (BW кратно 2,75 МГц), 57/50 (BW кратно 2 МГц ) и 8/7 (BW кратно 1,75 МГц и во всех остальных случаях). Защитный интервал при OFDM-модуляции – мощное средство борьбы с межсимвольными помехами (межсимвольной интерференции, МСИ), возникающими вследствие неизбежных в городских условиях переотражений и многолучевого распространения сигнала. МСИ приводит к тому, что в приемнике на прямо распространяющийся сигнал накладывается переотраженный сигнал, содержащий предыдущий символ. При модуляции OFDM переотраженный сигнал попадает в защитный интервал и вреда не причиняет. Однако этот механизм не предотвращает внутрисимвольную интерференцию – наложение сигналов с одним и тем же символом, пришедших с фазовой задержкой. В результате информация может полностью исказиться или (например, при фазовом сдвиге на 180°) просто исчезнуть. Для предотвращения потери информации при пропадании отдельных символов или их фрагментов стандарт IEEE 802.16 предусматривает эффективные средства канального кодирования.

Кодирование данных на физическом уровне включает три стадии – рандомизацию, помехозащитное кодирование и перемежение. Рандомизация – это умножение  блока данных на псевдослучайную  последовательность (ПСП), которую формирует  генератор ПСП с задающим полиномом  вида 1 + х14 + х15. В нисходящем потоке генератор ПСП инициализируется с началом кадра посредством кодового слова 4А8016. Начиная со второго пакета кадра генератор ПСП инициализируется на основе идентификационного номера базовой станции BSID, идентификатора про филя пакета DIUC (downlink interval usage code) и номера кадра (рисунок 3.2). В восходящем потоке все происходит аналогично, с той лишь разницей, что инициализация генератора ПСП по схеме, приведенной на рис.3.2, происходит с первого пакета (вместо DIUC используется UIUC – uplink interval usage code).

Рисунок 3.2 – Формирование вектора инициализации генератора ПСП для рандомизации нисходящего потока OFDM

Кодирование данных предполагает каскадный  код с двумя стадиями – кодер  Рида-Соломона из поля Галуа GF (256) и  сверточный кодер. В базовом виде код Рида-Соломона оперирует блоками исходных данных по 239 байт, формируя из них кодированный блок размером 255 байт (добавляя 16 проверочных байт). Такой код способен восстановить до 8 поврежденных байт. Поскольку реально используются блоки данных меньшей длины K, перед ними добавляются (239 – K) нулевых байт. После кодирования эти байты удаляются. Если необходимо сократить число проверочных слов, так чтобы уменьшить число восстанавливаемых байт Т, используются только 2 первых проверочных байтов. Обязательные для поддержки в IEEE 802.16 варианты каскадного кода приведены в таблице 3.1.

Информация о работе Проектирование беспроводных систем