Автор работы: Пользователь скрыл имя, 12 Апреля 2014 в 04:31, дипломная работа
Системы телевизионного наблюдения предназначены для обеспечения безопасности на объекте. Они позволяют наблюдателю следить за одним или несколькими объектами, находящимися порой на значительном расстоянии как друг от друга, так и от места наблюдения. В настоящее время системы телевизионного наблюдения не являются экзотикой, они находят все более широкое применение во многих сферах человеческой жизни. Наиболее простая система телевизионного наблюдения - это камера, подключенная к телевизору или монитору, такая система позволяет наблюдать за ребенком или автомобилем возле дома.
Введение.
Глава 1
Системы охранного телевидения.
Аналоговые системы видеонаблюдения.
Цифровые системы видеонаблюдения.
Устройство и основные принципы работы элементов телевидения.
Сравнительные характеристики аналогового и цифрового телевидения.
Среды передачи телевизионных сигналов
Преимущество волокнистой оптики как передающей среды.
Принципиальное устройство волокон.
Классификация волокон.
Соотношение сторон пикселя
У разных видов кодировок сигнала соотношение длины пикселя к его высоте может различаться. Так, в формате RS-170 стороны соотносятся, как 4:3. Отношение сторон пикселя тесно связано с процессом обработки изображения. У многих контроллеров оцифровки, работающих с частотой 60 Гц, это соотношение равно 5:4, тогда у большинства грабберов, работающих с частотой 50 Гц, оно равно 3:2. Остальные платы захвата видеоизображения позволяют задавать отношение сторон пикселя программным путем. В том случае, когда картинка принимается и отображается с одинаковым соотношением сторон пикселя, оно не играет большой роли, форма объектов не искажается, квадраты остаются квадратами, а окружности – окружностями. Соотношение сторон пикселя следует принять во внимание при выполнении некоторых специальных операций, таких как определение площади участка изображения путем подсчета элементов, его составляющих, или изгиб выбранной области картинки. Кроме того, отношение длины и высоты пикселя важно, когда конечное изображение должно удовлетворять графическим стандартам, поэтому, если приложение требует точного “попиксельного” измерения, следует убедиться, что графические элементы изображения являются квадратными (имеют соотношение сторон 1:1).
Сжатие видеоданных
При записи изображения обычно используется по 8 бит (1 байт) для представления 256 уровней яркости красного, зеленого и синего цветов (RGB). Таким образом, для хранения одного элемента изображения (пиксела) требуется 3 байта памяти. Стандартный видеокадр формата 352Х288 пикселов требует 304128 байтов, а изображение на экране монитора даже при разрешении 640Х480 занимает почти целый мегабайт.
Использование классических алгоритмов сжатия "без потерь", таких как RLE (кодирование длин серий) или LZW (метод Зива - Лемпела - Уэлча), не решает проблемы, поскольку предельные для них коэффициенты сжатия (2-3 в случае черно-белых полутоновых или 1,5-2 для RGB изображений) совершенно недостаточны для большинства приложений. Коэффициент сжатия, достигаемый при использовании любого метода, зависит от характера изображения. Например одноцветный фон в любом случае сожмется лучше полного мелких деталей изображения.
Полноцветные 24-битовые изображения можно сжать путем синтеза изображения с искусственной палитрой и применения кодирования длин серий в сочетании со статистическим кодированием, но при этом максимальный коэффициент сжатия будет не более 3-5 относительно исходного изображения, причем основное сжатие произойдет за счет перехода от RGB к 256-цветному изображению с искусственной палитрой, причем искажения, возникающие при таком переходе, необратимы, и уже это обстоятельство не позволяет считать такой способ сжатия неискажающим.
Большинство современных методов сжатия как неподвижных, так и видеоизображений, обеспечивающих сжатие в десятки, а иногда в сотни раз, предполагает некоторые потери, то есть восстановленное изображение не совпадает в точности с исходным. Потери эти связаны с отказом от передачи или некоторого "загрубления" тех компонентов изображения, чувствительность к точности воспроизведения которых у человеческого глаза невелика. Рассмотрим это на конкретных примерах.
Как было сказано выше, при записи изображений традиционно используется RGB-представление, когда на каждую цветовую составляющую приходится по одному байту. Альтернативный подход состоит в переходе от RGB- к YCrCb-представлению:
Y=0,299*R+0,587*G+0,114*B
Cb=(B-Y)/0,866/2+128
Cr=(R-Y)/0,701/2+128
Чувствительность человеческого глаза к яркостному Y-компоненту и цветностным компонентам Cb и Cr неодинакова, поэтому вполне допустимым представляется выполнение этого преобразования с прореживанием (интерливингом) Cb- и Cr-компонентов, когда для группы из четырех соседних пикселов (2Х2) вычисляются Y-компоненты, а Cb и Cr используются общие (схема 4:1:1). Более того, пре- и постфильтрация в плоскостях Cb и Cr позволяет использовать прореживание по схеме 16:1:1 без сколько-нибудь значительной потери качества.
Схема 4:1:1
Y=0,299*8+0,587*8+0,114*8=7,
Cb=Y/4=1,964 Бит
Cr= Y/4=1,964 Бит
Y+Cr+Cb=11,784 Бит
Расчет показал, что схема 4:1:1 позволяет сократить выходной поток вдвое.
Схема 16:1:1
Y=0,299*8+0,587*8+0,114*8=7,
Cb=Y/16=0,491 Бит
Cr= Y/16=0,491 Бит
Y+Cr+Cb=8,838 Бит
Схема 16:1:1 позволяет сократить выходной поток в 2,71 раза.
В основе ставших уже классическими стандартов сжатия JPEG (для статических изображений) и MPEG (для видеоданных), так же как и в сравнительно новых методах сжатия на основе Wavelet-преобразования, лежит переход от пространственного представления изображения к спектральному. В случае JPEG/MPEG для такого перехода используется дискретное косинус-преобразование (ДКП) на блоках 8Х8, в случае Wavelet - система фильтров, примененных к изображению. На рисунке приведен фрагмент некоего блока (матрицы) пикселов
размером 8Х8 (разделенный по диагонали черно-белый квадрат). Применение к пиксельной матрице ДКП дает матрицу из 64 коэффициентов или спектральных составляющих. Нулевой коэффициент представляет собой среднюю яркость исходного блока, поэтому, отбрасывая при восстановлении коэффициенты с 1 по 63, мы получим просто серый квадрат (в верхнем ряду в центре). Добавление первого коэффициента позволяет достаточно грубо описать распределение яркостей в исходном блоке по горизонтали (вверху справа).
Внизу слева и в центре приведены результаты восстановления исходного блока с использованием коэффициентов соответственно 6 и 15. Очевидно, что число ненулевых спектральных составляющих тем выше, чем больше мелких деталей содержалось в исходном блоке. Эксперименты показывают, что на типичных полутоновых изображениях более половины всех блоков 8Х8 могут быть описаны менее чем 20 спектральными составляющими.
Чувствительность человеческого глаза к точности передачи высокочастотных спектральных составляющих невелика, что позволяет сократить число бит, используемых для их кодирования. Реализуется такое сокращение делением каждого частотного коэффициента на соответствующий ему элемент матрицы квантования, причем матрицы квантования для цветностных компонентов (Cb и Cr) содержат, как правило, большие коэффициенты для одних и тех же спектральных составляющих, чем для яркостной.
Квадрат в нижнем ряду справа иллюстрирует реконструкцию исходного блока 8Х8 при использовании матрицы квантования, обеспечивающей приблизительно восьмикратное сжатие типичного полутонового изображения.
Достижение высоких степеней сжатия (порядка сотен) при использовании методов, основанных на ДПК, невозможно, поскольку минимальным кодируемым в них остается стандартный блок 8Х8. Использование блоков большего размера возможно например на блоках 16Х16, но практическая реализация таких схем сопряжена с серьезными вычислительными затратами. При неумеренном повышении степени сжатия изображение становится все более "оквадраченым".
Гораздо более перспективным для получения больших коэффициентов сжатия представляется использование Wavelet-преобразования (wavelet - небольшая волна.). Переход в частотную область в схемах на его основе, как было сказано выше, достигается применением набора фильтров.
Общую схему сжатия на основе Wavelet-преобразования можно описать так. Исходное изображение (естественно, после преобразования RGB - YCrCb) фильтруется с применением низкочастотного и высокочастотного фильтров по строкам и столбцам с последующим прореживанием, так что вместо одного изображения размером M X N пикселов после первого прохода синтезируется четыре, размером (M/2) X (N/2) каждое, причем наиболее информативным из них является [hh] - то, которое было получено с использованием низкочастотного фильтра как по строкам, так и по столбцам.
Применение низкочастотного фильтра по строкам и высокочастотного по столбцам [hg] или высокочастотного по строкам и низкочастотного по столбцам [gh] дает значительно более "бедную" картинку, и совсем уж малоинформативным оказывается изображение [gg], полученное с использованием высокочастотного фильтра как по горизонтали, так и по вертикали. Дальнейшая судьба этих изображений (саббэндов) неодинакова. Саббэнды [hg] и [gh] обычно квантуются и после применения статистического кодирования попадают непосредственно в выходной поток. Саббэнд [gg] чаще всего просто игнорируется, а вот [hh] ждет та же судьба, что и исходное изображение. Для изображений "экранного" размера число уровней фильтрации составляет обычно 4-6.
Максимально достижимые коэффициенты сжатия при использовании Wavelet-преобразования зависят от размеров исходного изображения, и при приемлемых искажениях на экранном разрешении можно говорить о 50-70-кратном сжатии.
Протоколы передачи видеосигнала по высоко скоростным компьютерным сетям
Fast Ethernet
У технологии Fast Ethernet есть несколько ключевых свойств, которые определяют области и ситуации ее эффективного применения. К этим свойствам относятся:
Большая степень преемственности по отношению к классическому 10-Мегабитному Ethernet'у;
Высокая скорость передачи данных - 100 Mб/c;
Возможность работать на всех основных типах современной кабельной проводки - UTP Category 5, UTP Category 3, STP Type 1, многомодовом оптоволокне.
В 1992 году группа производителей сетевого оборудования, включая таких лидеров технологии Ethernet как SynOptics, 3Com и ряд других, образовали некоммерческое объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая обобщила бы достижения отдельных компаний в области Ethernet-преемственного высокоскоростного стандарта. Новая технология получила название Fast Ethernet.
В мае 1995 года комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3. Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.
Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем - оптоволокно, 2-х парная витая пара категории 5 и 4-х парная витая пара категории 3.
Метод доступа к среде CSMA/CD
Подуровни LLC и MAC в стандарте Fast Ethernet не претерпели изменений.
Подуровень LLC обеспечивает интерфейс протокола Ethernet с протоколами вышележащих уровней, например, с IP или IPX. Кадр LLC, изображенный на рисунке, вкладывается в кадр MAC, и позволяет за счет полей DSAP и SSAP идентифицировать адрес сервисов назначения и источника соответственно. Например, при вложении в кадр LLC пакета IPX, значения как DSAP, так и SSAP должны быть равны Е0. Поле управления кадра LLC позволяет реализовать процедуры обмена данными трех типов.
Процедура типа 1 определяет обмен данными без предварительного установления соединения и без повторной передачи кадров в случае обнаружения ошибочной ситуации.
Процедура типа 2 определяет режим обмена с установлением соединений, нумерацией кадров, управлением потоком кадров и повторной передачей ошибочных кадров.
Процедура типа 3 определяет режим передачи данных без установления соединения, но с получением подтверждения о доставке информационного кадра адресату.
Существует расширение формата кадра LLC, называемое SNAP (Subnetwork Access Protocol). В случае использования расширения SNAP в поля DSAP и SSAP записывается значение AA, тип кадра по-прежнему равен 03, а для обозначения типа протокола, вложенного в поле данных, используются следующие 4 байта, причем байты идентификатора организации (OUI) всегда равны 00 (за исключением протокола AppleTalk), а последний байт (TYPE) содержит идентификатор типа протокола (например, 0800 для IP).
Заголовки LLC или LLC/SNAP используются мостами и коммутаторами для трансляции протоколов канального уровня.
Подуровень управления доступом к среде Media Access Control (MAC)
Подуровень MAC ответственен за формирование кадра Ethernet, получение доступа к разделяемой среде передачи данных и за отправку с помощью физического уровня кадра по физической среде узлу назначения.
Разделяемая среда Ethernet, независимо от ее физической реализации (коаксиальный кабель, витая пара или оптоволокно с повторителями), в любой момент времени находится в одном из трех состояний - свободна, занята, коллизия. Состояние занятости соответствует нормальной передаче кадра одним из узлов сети. Состояние коллизии возникает при одновременной передаче кадров более, чем одним узлом сети.
MAC-подуровень каждого узла сети получает от физического уровня информацию о состоянии разделяемой среды. Если она свободна, и у MAC-подуровня имеется кадр для передачи, то он передает его через физический уровень в сеть. Физический уровень одновременно с побитной передачей кадра следит за состоянием среды. Если за время передачи кадра коллизия не возникла, то кадр считается переданным. Если же за это время коллизия была зафиксирована, то передача кадра прекращается, и в сеть выдается специальная последовательность из 32 бит (так называемая jam-последовательность), которая должна помочь однозначно распознать коллизию всеми узлами сети.
После фиксации коллизии MAC-подуровень делает случайную паузу, а затем вновь пытается передать данный кадр. Случайный характер паузы уменьшает вероятность одновременной попытки захвата разделяемой среды несколькими узлами при следующей попытке. Максимальное число попыток передачи одного кадра - 16, после чего MAC-подуровень оставляет данный кадр и начинает передачу следующего кадра, поступившего с LLC-подуровня.
MAC-подуровень узла приемника, который получает биты кадра от своего физического уровня, проверяет поле адреса кадра, и если адрес совпадает с его собственным, то он копирует кадр в свой буфер. Затем он проверяет, не содержит ли кадр специфические ошибки, если кадр корректен, то его поле данных передается на LLC-подуровень, если нет - то отбрасывается.