Солнечная энергетика как альтернативный источник энергии

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 19:25, реферат

Описание работы

Альтернативные и возобновляемые источники энергии, такие как энергия ветра и солнечного света, гидро- и геотермальная энергия, во всем мире привлекают все больше внимания. Растущий интерес к ним вызван экологическими соображениями, с одной стороны, и ограниченностью традиционных земных ресурсов — с другой. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в отдельное научное направление – фотовольтаику.

Файлы: 1 файл

реферат.doc

— 1.08 Мб (Скачать файл)

     Министерство  науки и образования Украины

Запорожская государственная инженерная академия

Факультет информационных и электронных технологий

кафедра физической и биомедицинской электроники

     Реферат

     на  тему: Солнечная энергетика как альтернативный источник энергии

по дисциплине: «Микроэлектронные приборы» 
 
 
 
 
 
 
 
 
 
 
 

     Запорожье, 2010 
1. Источник энергии солнечного излучения
 

     Альтернативные  и возобновляемые источники энергии, такие как энергия ветра и  солнечного света, гидро- и геотермальная  энергия, во всем мире привлекают все больше внимания. Растущий интерес к ним вызван экологическими соображениями, с одной стороны, и ограниченностью традиционных земных ресурсов — с другой. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в отдельное научное направление – фотовольтаику.

     Однако  высокая стоимость солнечных  элементов до недавнего времени  закрывала им путь в области, где  без них можно обойтись. Но времена меняются, и экономически передовые государства в своих национальных программах уже стимулируют массовое применение солнечных батарей. Что это — дань моде, транснациональное лоббирование чьих-то интересов или устойчивая тенденция, время которой пришло?

     Источник, который не иссякнет.

     Источником  энергии солнечного излучения служит термоядерная реакция – каждую секунду  на Солнце ~6*1011 кг водорода превращается в гелий. Дефект массы при этом составляет 4000 кг, что согласно соотношению Эйнштейна  

     E=mc2  

     приводит  к выделению 4*1020 Дж энергии. Основная часть этой энергии испускается в виде электромагнитного излучения в диапазоне 0,2–3 мкм. Поскольку полная масса Солнца ~2*1030 кг, оно должно пребывать в достаточно стабильном состоянии свыше 10 млрд. лет с постоянным выделением энергии.

     Интенсивность солнечного излучения в свободном  пространстве на удалении, равном среднему расстоянию между Землей и Солнцем, называется солнечной постоянной. Ее величина – 1353 Вт/м2. При прохождении  через атмосферу солнечный свет ослабляется в основном из-за поглощения инфракрасного излучения парами воды, ультрафиолетового излучения – озоном и рассеяния излучения частицами атмосферной пыли и аэрозолями. Показатель атмосферного влияния на интенсивность солнечного излучения, доходящего до земной поверхности, называется “воздушной массой” (АМ). АМ определяется как секанс угла между Солнцем и зенитом.

     На  рис.1 показано спектральное распределение  интенсивности солнечного излучения  в различных условиях. Верхняя  кривая (АМ0) соответствует солнечному спектру за пределами земной атмосферы (например, на борту космического корабля), т.е. при нулевой воздушной массе. Она аппроксимируется распределением интенсивности излучения абсолютно черного тела при температуре 5800 К. Кривые АМ1 и АМ2 иллюстрируют спектральное распределение солнечного излучения на поверхности Земли, когда Солнце в зените и при угле между Солнцем и зенитом 60°, соответственно. При этом полная мощность излучения – соответственно порядка 925 и 691 Вт/м2. Средняя интенсивность излучения на Земле примерно совпадает с интенсивностью излучения при АМ=1,5 (Солнце – под углом 45° к горизонту).  

     

     Рисунок 1 Распределение интенсивности по спектру солнечного излучения 

     Таким образом, при использовании высокоэффективных методов преобразования энергии Солнце может обеспечивать бурно растущие потребности в ней практически вечно. 

     2. Основные принципы работы солнечных батарей 

     Простейшая  конструкция солнечного элемента (СЭ) – прибора для преобразования энергии солнечного излучения – на основе монокристаллического кремния показана на рис. 2. На малой глубине от поверхности кремниевой пластины p-типа сформирован p-n-переход с тонким металлическим контактом. На тыльную сторону пластины нанесен сплошной металлический контакт. 

     

     Рисунок 2 - Конструкция солнечного элемента 

     Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электрон-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область. Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой (рис. 3а). В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение (рис. 3б). Отрицательному полюсу источника тока соответствует n-слой, а p-слой – положительному. 

     

     Рисунок 3 - Зонная модель разомкнутого p-n-перехода

     а) - в начальный момент освещения; б) - изменение зонной модели под действием  постоянного освещения и возникновение  фотоЭДС 

     Величина  установившейся фотоЭДС при освещении  перехода излучением постоянной интенсивности  описывается уравнением вольт-амперной характеристики (ВАХ) (рис. 4): 

     U = (kT/q)ln((Iph-I)Is/+1) 

     где Is– ток насыщения, а Iph – фототок.

     ВАХ поясняет эквивалентная схема фотоэлемента (рис. 5), включающая источник тока Iph=SqN0Q, где S – площадь фотоэлемента, а коэффициент собирания Q – безразмерный множитель (<1), показывающий, какая доля всех созданных светом электронно-дырочных пар (SN0) собирается p-n-переходом. Параллельно источнику тока включен p-n-переход, ток через который равен Is[eqU/kT–1]. p-n-Переход шунтирует нагрузку, и при увеличении напряжения ток через него быстро возрастает. В нагрузку (сопротивление R) отбирается ток I.

 

     

     Рисунок 4 - Вольт-амперная характеристика солнечного элемента 

     Уравнение ВАХ справедливо и при освещении  фотоэлемента светом произвольного  спектрального состава, изменяется лишь значение фототока Iph. Максимальная мощность отбирается в том случае, когда фотоэлемент находится в режиме, отмеченном точкой а (см. рис. 4). 

     

     Рисунок 5 - Эквивалентная схема солнечного элемента 

     Максимальная  мощность, снимаемая с 1 см2, равна 

     P = Iph*U = x*Iкз*Uхх ,  

     где x – коэффициент формы или коэффициент  заполнения вольт-амперной характеристики, Iкз – ток короткого замыкания, Uхх – напряжение холостого хода.

 

      3. Проблемы нахождения и использования конструкций и материалов для солнечных элементов 

     Для эффективной работы солнечных элементов  необходимо соблюдение ряда условий:

  • оптический коэффициент поглощения (a) активного слоя полупроводника должен быть достаточно большим, чтобы обеспечить поглощение существенной части энергии солнечного света в пределах толщины слоя;
  • генерируемые при освещении электроны и дырки должны эффективно собираться на контактных электродах с обеих сторон активного слоя;
  • солнечный элемент должен обладать значительной высотой барьера в полупроводниковом переходе;
  • полное сопротивление, включенное последовательно с солнечным элементом (исключая сопротивление нагрузки), должно быть малым для того, чтобы уменьшить потери мощности (джоулево тепло) в процессе работы;
  • структура тонкой пленки должна быть однородной по всей активной области солнечного элемента, чтобы исключить закорачивание и влияние шунтирующих сопротивлений на характеристики элемента.

     Производство  структур на основе монокристаллического кремния, удовлетворяющих данным требованиям, – процесс технологически сложный  и дорогостоящий. Поэтому внимание было обращено на такие материалы, как  сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники.

     Аморфный  кремний выступил в качестве более  дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы  в 1975 году. Оптическое поглощение аморфного  кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С): можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

     Пока  максимальный КПД экспериментальных  элементов на основе а-Si:Н – 12% –  несколько ниже КПД кристаллических  кремниевых СЭ (~15%). Однако не исключено, что с развитием технологии КПД элементов на основе а-Si:Н достигнет теоретического потолка – 16 %.

     Наиболее  простые конструкции СЭ из а-Si:Н  были созданы на основе структуры  металл – полупроводник (диод Шотки) (рис. 6). Несмотря на видимую простоту, их реализация достаточно проблематична – металлический электрод должен быть прозрачным и равномерным по толщине, а все состояния на границе металл/а-Si:Н – стабильными во времени. чаще всего солнечные элементы на основе а-Si:Н формируют на ленте из нержавеющей стали или на стеклянных подложках, покрытых проводящим слоем.  

     

     Рисунок 6 - Конструкция фотоэлемента с барьером

 

      При использовании стеклянных подложек на них наносят прозрачную для света проводящую оксидную пленку (ТСО) из SnO2, In2O3 или SnO2+In2O3 (ITO), что позволяет освещать элемент через стекло. Поскольку у нелегированного слоя электронная проводимость выражена слабо, барьер Шотки создается за счет осаждения металлических пленок с высокой работой выхода (Pt, Rh, Pd), которая обуславливает образование области положительного объемного заряда (обедненного слоя) в а-Si:Н.

     При нанесении аморфного кремния  на металлическую подложку образуется нежелательный потенциальный барьер а-Si:Н/металлическая подложка, высоту которого необходимо уменьшать. Для этого используют подложки из металлов с малой работой выхода (Mo, Ni, Nb). Перед нанесением аморфного кремния желательно осадить на металлической подложке тонкий слой (10–30 нм) а-Si:Н, легированный фосфором. Не рекомендуется использовать в качестве материалов электродов легко диффундирующие в аморфный кремний металлы (например, Au и Al), а также Cu и Ag, поскольку а-Si:Н обладает плохой адгезией к ним. Отметим, что Uxx солнечных элементов с барьером Шотки на основе а-Si:Н обычно не превышает 0,6 В.

     Более высокой эффективностью обладают СЭ на основе аморфного кремния с p-i-n-структурой (рис.7). В этом “заслуга” широкой  нелегированной i-области a-Si:H, поглощающей  существенную долю света. Но возникает проблема – диффузионная длина дырок в a-Si:H очень мала (~100 нм), поэтому в солнечных элементах на основе a-Si:H носители заряда достигают электродов в основном только благодаря внутреннему электрическому полю, т.е. за счет дрейфа носителей заряда. В СЭ на основе кристаллических полупроводников носители заряда, имея большую диффузионную длину (100 – 200 мкм), достигают электродов и в отсутствие электрического поля. Поскольку в простом p-n-переходе в a-Si:H область сильного электрического поля очень узка и диффузионная длина носителей заряда мала, в большей части СЭ не происходит эффективного разделения носителей заряда, генерируемых при поглощении света. Следовательно, для получения эффективных СЭ на основе p-i-n-сруктуры аморфного гидрогенизированного кремния необходимо добиться во всей i-области однородного мощного внутреннего электрического поля, достаточного для достижения длины дрейфа носителей, соизмеримого с размерами области поглощения (см. рис. 7). 

     

     Рисунок 7 - Энергетическая зонная диаграмма p-i-n-структуры (а) и расчетное распределение электрического поля (б) 

     Данная  задача решается, если при изготовлении p-i-n-структуры первым формировать p-слой (рис.8). Для его создания необходимо небольшое количество бора (<1018 см3), а значит, существенного загрязнения нелегированного слоя не происходит.

 

     

     Рисунок 8 - р-i-n-Структура на стеклянной (а) и стальной (б) подложке 

     В то же время, если первым осаждать n-слой, то наличие остаточного фосфора изменяет свойства i-слоя. Формирование p-слоя на поверхности прозрачного проводящего электрода обеспечивает с ним хороший электрический контакт. Однако толщина p-слоя должна быть мала (10 нм), чтобы основная часть света поглощалась в i-области.

Информация о работе Солнечная энергетика как альтернативный источник энергии