Министерство
сельского хозяйства Российской федерации
ФГОУ
ВПО «Санкт-Петербургская государственная
академия
ветеринарной
медицины»
Кафедра
ветеринарной радиобиологии и БЖЧС
Реферат по Гражданской
обороне при гурозе ЧС на тему:
«Средства защиты от радиации»
Выполнила:
Выгодина Валерия
Олеговна – студентка
1-го курса 7 группы ФВМ
Проверил:
ассистент Хасенова Ирина Александровна
Оценка:
Санкт-Петербург
2014
Содержание
Введение
3
Облучение
4
Измерение
ионизирующих излучений
6
Химическое
действие ионизирующего излучения
8
Биологическое
действие ионизирующего излучения
8
Единицы
измерения
9
Механизмы
биологического воздействия
10
Гигиеническое
нормирование ионизирующих излучений
11
Средства
защиты организмов от излучения
12
Пути обеспечения
радиационной безопасности
15
Организационные
мероприятия, обеспечивающие безопасность
работ
17
Санкции за нарушение требований норм и правил по радиационной
безопасности в РФ
17
Действующие
в России правила и нормы
19
Применение
ионизирующих излучений
20
Заключение
22
Список
использованной литературы
23
Приложение
24
Введение
Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли.
Излучения радиоактивных веществ оказывает очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001 °С, нарушает жизнедеятельность клеток.
Облучение
Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку во-первых, объем легочной вентиляции очень большой, а во-вторых, значения коэффициента усвоения в легких более высоки.
При попадании радиоактивных веществ в организм любым путём они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимуму, а затем в течение 15-20 суток снижается.
Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр. вызывают настолько серьезное поражения центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от10 до 50 Гр. при облучении всего тела поражение ЦНС может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочно-кишечного тракта или организм с ними справится, и, тем не менее, смерть может наступить через один-два месяца с момента облучения главным образом из-за разрушения клеток красного костного мозга главного компонента кроветворной системы организма: от дозы в 3 - 5 Гр. при облучении всего тела умирает примерно половина всех облученных. Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором позже. Разумеется, чаще всего человек умирает в результате одновременного действия всех указанных последствий облучения. Исследования в этой области необходимы, поскольку полученные данные нужны для оценки последствий ядерной войны и действия больших доз облучения при авариях ядерных установок и устройств. Красный костный мозг и другие элементы кроветворной системы наиболее уязвимы при облучении и теряет способность нормально функционировать уже при дозах облучения 0,5 1 Гр. К счастью, они обладают также замечательной способностью к регенерации, и если доза облучения не настолько велика, чтобы вызвать повреждения всех клеток, кроветворная система может полностью восстановить свои функции. Если же облучению подверглось не все тело, а какая-то его часть, то уцелевших клеток мозга бывает достаточно для полного возмещения поврежденных клеток. Репродуктивные органы и глаза также отличаются повышенной чувствительностью к облучению.
Поэтому можно сделать вывод, что радиация очень опасна для людей и для последующего потомства. Так, например, вероятность заболеть раком легких на каждую единицу дозы облучения для шахтеров урановых рудников оказалась в 4 7 раз выше, чем для людей, переживших атомную бомбардировку. Следовательно проблема разработки средств защиты от радиации очень актуальна в наше время. И хотя в материалах некоторых обследований содержится вывод о том, что у облученных родителей больше шансов родить ребенка с синдромом Дауна, другие исследования этого не подтверждают. Несколько настораживает сообщение о том, что у людей, получающих малые дозы облучения, действительно наблюдается повышенное содержание клеток крови с хромосомными нарушениями.
Согласно оценкам, полученным при первом подходе, доза в 1 Гр., полученная при низком уровне радиации только особями мужского пола, индуцирует появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных. Оценки, полученные для особей женского пола, гораздо менее определенны, но явно ниже; это объясняется тем, что женские половые клетки менее чувствительны к действию радиации. Согласно ориентировочным оценкам, частота мутаций составляет от 0 до 900, а частота хромосомных аберраций от 0 до 300 случаев на миллион живых новорожденных.
Измерение ионизирующих излучений
Методы измерения
Исторически первыми датчиками ионизирующего излучения были химические светочувствительные материалы, используемые в фотографии. Ионизирующие излучения засвечивали фотопластинку, помещенную в светонепроницаемый конверт. Однако от них быстро отказались из-за длительности и затратности процесса, сложности проявки и низкой информативности.
В качестве датчиков излучения в быту и промышленности наибольшее распространение получили дозиметры на базе счётчиков Гейгера. Счетчик Гейгера - газоразрядный прибор, в котором ионизация газа излучением превращается в электрический ток между электродами. Как правило, такие приборы корректно регистрируют только гамма-излучение. Некоторые приборы снабжаются специальным фильтром, преобразующим бета-излучение в гамма-кванты за счет тормозного излучения. Счетчики Гейгера плохо селектируют излучения по энергии, для этого используют другую разновидность газоразрядного счетчика, т.н. пропорциональный счётчик.
Существуют полупроводниковые датчики ионизирующего излучения. Принцип их действия аналогичен газоразрядным приборам с тем отличием, что ионизируется объем полупроводника между двумя электродами. В простейшем случае это обратносмещенный полупроводниковый диод. Для максимальной чувствительности такие детекторы имеют значительные размеры.
Широкое применение в науке получили сцинтилляторы. Эти приборы преобразуют энергию излучения в видимый свет за счет поглощения излучения в специальном веществе. Вспышка света регистрируется фотоэлектронным умножителем. Сцинтилляторы хорошо разделяют излучение по энергиям.
Для исследования потоков элементарных частиц применяют множество других методов, позволяющих полнее исследовать их свойства, например пузырьковая камера, камера Вильсона.
Эффективность взаимодействия ионизирующего излучения с веществом зависит от типа излучения, энергии частиц и сечения взаимодействия облучаемого вещества. Важные показатели взаимодействия ионизирующего излучения с веществом:
- линейная
передача энергии (ЛПЭ), показывающая,
какую энергию излучение передаёт среде
на единице длины пробега при единичной
плотности вещества.
- поглощённая
доза излучения, показывающая, какая энергия
излучения поглощается в единице массы
вещества.
В Международной системе единиц СИ единицей поглощённой дозы является грэй (Гр, англ. gray, Gy), численно равный поглощённой энергии в 1 Дж на 1 кг массы вещества. Иногда встречается устаревшая внесистемная единица рад (англ. rad): доза, соответствующая поглощенной энергии 100 эрг на 1 грамм вещества. 1 рад = 0,01 Гр.
Химическое действие ионизирующего излучения
Ионизирующее
излучение может вызывать химические
превращения вещества. Такие превращения
изучает радиационная
химия. Под действием ионизирующего излучения происходят следующие превращения:
- Превращение
молекул кислорода в молекулы озона[15], из-за чего металлы быстро окисляются.
- Разложение воды на кислород и водород с образованием некоторого количества перекиси водорода.
- Превращение аллотропических модификаций в более устойчивые: белого фосфора в красный, белого олова в серое, алмаза в графит.
- Разложение
на простые вещества газов — углекислого газа, сернистого газа, сероводорода, хлороводорода, аммиака.
- Полимеризация соединений, содержащих двойные и тройные связи.
Биологическое действие ионизирующих
излучений
Разные
типы ионизирующего излучения обладают
разным разрушительным эффектом и разным
способом воздействия на биологические
ткани. Соответственно, одной и той же
поглощённой дозе соответствует разная
биологическая эффективность излучения.
Поэтому для описания воздействия излучения
на живые организмы вводят понятие относительной
биологической эффективности излучения, которая измеряется с помощью коэффициента
качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Для альфа-излучения и осколков ядер коэффициент качества 10…20. Нейтроны — 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной
передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).