Техническое обслуживание и ремонт видеокарты

Автор работы: Пользователь скрыл имя, 15 Марта 2015 в 11:33, курсовая работа

Описание работы

Цель данной курсовой работы: Техническое обслуживание и ремонт видеокарты.
Для достижения поставленной цели необходимо решить ряд задач:
Изучить виды видеокарт, их техническое устройство и ее основные узлы.
Проанализировать причины возникновения неисправностей видео плат.
Разработать методы поиска и устранения неисправностей.

Содержание работы

Введение
Глава 1. Основные сведения о видеоплате
ГЛАВА 2. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ВИДЕОКАРТ
ГЛАВА 3. Инструкционно-технологическая карта неисправностей видеокарт
ЗАКЛЮЧЕНИЕ
Список литературы

Файлы: 1 файл

курсовая Видеокарты.docx

— 1.42 Мб (Скачать файл)

Содержание

Введение

Глава 1. Основные сведения о видеоплате

ГЛАВА 2. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ВИДЕОКАРТ

ГЛАВА 3. Инструкционно-технологическая карта неисправностей видеокарт

ЗАКЛЮЧЕНИЕ

Список литературы

 

 

Введение

Практически все пользователи делятся на две основных категории: одних совершенно не волнует, какого качества видео плата установлена в их компьютере, для других же именно этот вопрос жизненно важен. К первой группе относятся те, кто ограничивается работой с текстом, таблицами, простенькой графикой и, конечно же - Интернетом. Вторая, более многочисленная категория - это фанаты компьютерных игр, а также профессиональные дизайнеры. По сути, для современных требовательных игр и необходимы мощные видеокарты, здесь и проявляются все возможности видео платы.

Цель данной курсовой работы: Техническое обслуживание и ремонт видеокарты. 

Для достижения поставленной цели необходимо решить ряд задач:

Изучить виды видеокарт, их техническое устройство и ее основные узлы.

Проанализировать причины возникновения неисправностей видео плат.

Разработать методы поиска и устранения неисправностей.

 

 

 

Глава 1. Основные сведения о видеоплате

1.1 Назначение и основные  блоки устройства

Устройство, которое называется видеокартой, есть в каждом компьютере, либо в виде устройства (рис. 1), интегрированного в системную плату, либо в качестве самостоятельного компонента. Главная функция, выполняемая видеокартой, - преобразование полученной от центрального процессора информации и команд в формат, который воспринимается электроникой монитора, для создания изображения на экране. Монитор обычно является неотъемлемой частью любой системы, с помощью которого пользователь получает визуальную информацию, включая графику, текст, видео, она влияет на производительность всего компьютера в целом.

 

Рис. 1 Основные узлы, блоки видеокарты

1.TV-выход

2.Разъем DVI (можно преобразовать в аналоговый сигнал)

3.Выход VGA

4.Разъем питания вентилятора охлаждения

5.Графический процессор с интегрированной DAC и теплоотводом/вентилятором

6.Разъем AGP

7.Модули памяти DDR (128 Мбайт)

8.Микросхема регулировки напряжения

BIOS видеокарты

Видеокарты имеют свой BIOS, которая подобна системной BIOS, но полностью независима от нее. Если вы включите монитор первым и немедленно посмотрите на экран, то сможете увидеть опознавательный знак BIOS видеоадаптера в самом начале запуска системы.видеокарты, подобно системной BIOS, хранится в микросхеме ROM; вона содержит основные команды, которые предоставляют интерфейс между оборудованием видеоадаптера и программным обеспечением. Программа, которая обращается к функциям BIOS видеокарты, может быть автономным приложением, операционной системой или системной BIOS. Обращение к функциям BIOS позволяет вывести информацию о мониторе во время выполнения процедуры POST и начать загрузку системы до начала загрузки с диска любых других программных драйверов.

Графический процессор

Графический процессор (рис. 2), или набор микросхем, является сердцем любой видеокарты и характеризует быстродействие адаптера и его функциональные возможности. Две видеокарты различных производителей с одинаковыми процессорами зачастую демонстрируют схожую производительность и функции обработки графических данных. Кроме того, программные драйверы, с помощью которых операционные системы и приложения управляют видеокартой, как правило, разрабатываются именно с учетом параметров конкретного набора микросхем.

 

 

Рис. 2. Графический процессор

 

Видеоконтроллер

Отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

Видеопамять

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, буферов и т.п. Казалось бы, что чем её больше - тем лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти - это наиболее распространенная ошибка! Значение объема памяти неопытные пользователи переоценивают чаще всего, используя его для сравнения разных моделей видеокарт. Оно и понятно - раз параметр, указываемый во всех источниках одним из первых, в два раза больше, то и скорость у решения должна быть в два раза выше, считают они. Реальность же от этого мифа отличается тем, что рост производительности растет до определенного объема и после его достижения попросту останавливается.

В каждом приложении есть определенный объем видеопамяти, которого хватает для всех данных, и хоть 4 ГБ туда поставь - у нее не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки. Именно поэтому почти во всех случаях видеокарта с 320 Мбайт видеопамяти будет работать с той же скоростью, что и карта с 640 Мбайт (при прочих равных условиях). Ситуации, когда больший объем памяти приводит к видимому увеличению производительности, существуют, это очень требовательные приложения в высоких разрешениях и при максимальных настройках. Но такие случаи весьма редки, поэтому, объем памяти учитывать конечно нужно, но не забывая о том, что выше определенного объема производительность просто не растет, есть более важные параметры, такие как ширина шины памяти и ее рабочая частота.

Большинство видеокарт для хранения изображений при их обработке обходятся собственной видеопамятью; хотя некоторые видеоадаптеры AGP используют системную оперативную память для хранения трехмерных текстур, эта функция редко находит применение.

От объема видеопамяти зависит максимальная разрешающая способность экрана и глубина цвета, поддерживаемая адаптером. На рынке в настоящее время предлагаются модели с различным объемом видеопамяти: 128, 256, 512 Мбайт. Хотя больший объем видеопамяти не сказывается на скорости обработки графических данных, при использовании увеличенной шины данных (с 64 до 128 или 256 бит) или системной оперативной памяти для кэширования часто отображаемых объектов скорость видеокарты может существенно увеличиться.

Кроме того, объем видеопамяти позволяет видеокарте отображать больше цветов и поддерживать более высокое разрешение, а также хранить и обрабатывать трехмерные текстуры в видеопамяти адаптера AGP/ PCI-E 16x, а не в ОЗУ системы.

Память DDR SDRAM. Этот тип памяти позволяет работать на удвоенной частоте по сравнению с обычной памятью SDRAM. Разработан для современных системных плат с частотой шины 133 МГц. В настоящее время DDR SDRAM используется во всех видеокартах среднего и высшего уровней.

Видеокарты с одним и тем же графическим процессором (GPU) могут взаимодействовать с видеопамятью, обладающей различными скоростными характеристиками.

Рассматривая память в системе отображения, следует также остановиться на формате обращения к памяти со стороны схем обработки изображения. В современной видеокарте все схемы, необходимые для формирования и обработки изображения, реализованы в специализированной микросхеме - графическом процессоре, установленном на этой же плате. Графический процессор и память обмениваются данными по локальной шине. Большинство современных адаптеров имеют 64-,128- или 256-разрядную шину

Цифроаналоговый преобразователь

Цифроаналоговый преобразователь видеокарты (обычно называемый RAMDAC) преобразует генерируемые компьютером цифровые изображения в аналоговые сигналы, которые может отображать монитор. Быстродействие цифроаналогового преобразователя измеряется в МГц, чем быстрее процесс преобразования, тем выше вертикальная частота регенерации.

В большинстве современных видеоадаптеров функции преобразователя поддерживаются непосредственно графическим процессором, однако у некоторых адаптеров с поддержкой нескольких мониторов есть отдельная микросхема RAMDAC, которая позволяет второму монитору работать с разрешением, отличным от установленного разрешения основного монитора.

При увеличении быстродействия цифроаналогового преобразователя происходит повышение частоты вертикальной регенерации, что позволяет достичь более высокого разрешения экрана при оптимальных частотах обновления (72-85 Гц и более).

Шина

В настоящее время, наиболее распространенным является стандарт шины PCI-E (PCI Express) для персональных компьютеров, который сейчас приходит на замену AGP. Новая технология PCI-E обеспечивает достаточно широкую полосу пропускания шин ввода-вывода для удовлетворения растущих требований к скорости передачи данных по этим шинам. Ширину пропускания канала PCI Express можно масштабировать за счет добавления каналов с данными, при этом получаются соответствующие модификации шины (PCI-E x1, x4, x8, x16).

Производительность устройства PCI-E характеризуется числом используемых сигнальных линий. Одна линия имеет пропускную способность 250 Мбайт/с, в каждом направлении передачи сигналов. Так, интерфейс PCI-E 16x (16 линий) имеет пропускную способность 4 Гбайт/с.

 Основные характеристики

Тактовая частота видеочипа

Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество различных исполнительных блоков, их характеристики и т.п.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная - это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Количество блоков пиксельных шейдеров (или пиксельных процессоров)

Пиксельные процессоры - это одни из главных блоков видеочипа, которые выполняют специальные программы, известные также как пиксельные шейдеры. По числу блоков пиксельных шейдеров и их частоте можно сравнивать шейдерную производительность разных видеокарт. Так как большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, то количество этих блоков очень важно! Если одна модель видеокарты основана на GPU с 8 блоками пиксельных шейдеров, а другая из той же линейки - 16 блоками, то при прочих равных вторая будет вдвое быстрее обрабатывать пиксельные программы, и в целом будет производительнее. Но на основании одного лишь количества блоков делать однозначные выводы нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов.

Количество блоков вершинных шейдеров (или вершинных процессоров)

Данная характеристика важна для некоторых игр, но не так явно, как предыдущая, так как даже современными играми блоки вершинных шейдеров почти никогда не бывают загружены даже наполовину. И, так как производители балансируют количество разных блоков, не позволяя возникнуть большому перекосу в распределении сил, количеством вершинных процессоров при выборе видеокарты вполне можно пренебречь, учитывая их только при прочих равных характеристиках.

Количество унифицированных шейдерных блоков

Унифицированные шейдерные блоки объединяют два типа перечисленных выше блоков, они могут исполнять как вершинные, так и пиксельные программы (а также геометрические, которые появились в DirectX 10). Унификация блоков шейдеров значит, что код разных шейдерных программ (вершинных, пиксельных и геометрических) универсален, и соответствующие унифицированные процессоры могут выполнить любые программы из вышеперечисленных. Соответственно, в новых архитектурах число пиксельных, вершинных и геометрических шейдерных блоков как бы сливается в одно число - количество универсальных процессоров.

Блоки текстурирования

Эти блоки работают совместно с шейдерными процессорами всех указанных типов, ими осуществляется выборка и фильтрация текстурных данных, необходимых для построения сцены. Число текстурных блоков в видеочипе определяет текстурную производительность, скорость выборки из текстур.Особое влияние этот параметр оказывает на скорость при использовании трилинейной и анизотропной фильтраций, требующих дополнительных текстурных выборок.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как уже отмечалось выше, производительность блоков ROP влияет на филлрейт и это - одна из основных характеристик видеокарт. И хотя в последнее время её значение несколько снизилось, еще попадаются случаи, когда производительность приложений сильно зависит от скорости и количества блоков ROP.

Частота видеопамяти

Частота шины памяти на современных видеокартах бывает от 500 МГц до 2000 МГц, то есть может отличаться в четыре раза. И так как ПСП зависит и от частоты памяти и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 1000 МГц, будет иметь большую пропускную способность, по сравнению с 1400 МГц памятью с 128-битной шиной.

 Интерфейсы подключения видеокарт

Информация о работе Техническое обслуживание и ремонт видеокарты