Имитационное моделирование

Автор работы: Пользователь скрыл имя, 06 Июня 2013 в 18:30, реферат

Описание работы

Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование появилось во второй половине 50-х годов, как инструмент исследования сложных систем и процессов, не поддающихся формальному описанию в обычном понимании этого термина

Файлы: 1 файл

Imitatsionnoe_modelirovanie_1.docx

— 33.41 Кб (Скачать файл)

Имитационное  моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование  появилось во второй половине 50-х  годов, как инструмент исследования сложных систем и процессов, не поддающихся формальному описанию в обычном понимании этого термина . Возникновение и развитие имитационного моделирования как научной дисциплины тесно связано с развитием и ростом мощности вычислительной техники. Достигнув определенного уровня производительности (по некоторым оценкам он составляет около 105-106 операций в секунду) компьютер оказался пригодным не только для вычислений (попросту, как арифмометр), но и для активного исследования сложных процессов и систем. Сегодня уже классическими стали многие примеры применения имитационных моделей, которые в свое время были сенсацией: принятие решений о действиях экипажа корабля “Апполон-13” после взрыва кислородного бака на перелетной траектории к Луне, модель “Ядерной Зимы”, - и многие другие.

Если попытаться определить для имитационного моделирования  свойственный ему круг проблем, то в их числе окажутся проблемы, связанные в широком смысле с изучением и предсказанием поведения модели сложной системы, когда эксперимент над этой системой невозможен или нежелателен в реальных условиях ее существования. В целом ряде случаев имитационная модель является единственной альтернативой получения информации о поведении объекта и его характеристиках.

За время своего существования  имитационное моделирование проникло во многие отрасли науки, среди которых уже традиционно на первом месте выделяются экономика, экология и военные области (в некоторых моделях они тесно переплетаются). Перечисленные дисциплины можно объединить по некоторым признакам объектов их исследований, которые характеризуются как большие системы [4 - 10]. В последние годы имитация проникает в области разработки и применения сложных технических систем (в первую очередь, космических) что связано с радикальным усложнением самих этих систем, стоящих перед ними задач, а также высокой ценой риска при неправильных действиях экипажа, опера-тора и т.д. Среди характерных примеров можно привести работу по стыковке и сборке крупногабаритных разветвленных элементов орбитальных станций, дистанционное управление планетными автоматами в условиях большой длительности распространения радиосигнала (до 40 минут для Марса) и многие другие, когда принятие решений требует предварительного “проигрывания” нескольких вариантов развития событий и их последствий при различных стратегиях управления.

В отличие от больших систем, которые чаще ориентированы на прогнозирование и принятие решений, рассчитанные на длительные интервалы, и основанные на интегральных оценках (суммарные потери, среднее или интервальные значения вероятностей отказа или успеха, коэффициент готовности и т.п. ), моделирование технических систем требуют несколько иного подхода. Модель поведения технической системы - это, как правило, модель ситуации , описание и исследование которой строится на основе оперативной информации, поступившей в определенный момент времени, и требующей принятия единственного альтернативного решения в течение заданного (достаточно короткого) интервала времени. Здесь критерием принятия решения могут быть вероятностные, стоимостные и другие аналогичные оценки, но решающую роль играет быстрое развитие ситуации со сменой критериев (хотя общим критерием может оставаться, например, стоимость оборудования космической станции) и обратная связь по меняющимся параметрам, характеризующим ситуацию.

Различие в подходе  к моделированию больших и  технических систем накладывает  отпечаток и на характер интерпретации  выходной информации при моделировании. Если рассматривать предельные случаи, то вероятностная имитационная модель большой системы может использоваться для получения одного единственного числа, характеризующего, например, уровень средней рентабельности к определенному году. В то же время модель детерминированной, но разветвленной технической конструкции с распределенной массой, которая используется для принятия решения о траектории ее перемещения, может потребовать интерпретации громадного массива трехмерных координат и углов ориентации для множества элементов этой конструкции.

В начале 80-х годов произошло  событие, которое, как и появление  мощных компьютеров, в свое время  сыгравшее определяющую роль в зарождении имитационного моделирования, сегодня играет важную роль в направлении его дальнейшего развития, - это появление интерфейса “Виртуальная Реальность”. Предпосылками его долгое время были работы в области тренажерной техники для обучения пилотов, водителей и т.д., где соответствующие технические устройства использовались для создания образов динамической внешней среды оператора (в частности, коналоги [13]). С появлением виртуальной реальности в тренажерных системах произошла практически полная замена материальных элементов внешней среды на их виртуальные фантомы. Однако, важнее другое. В системе виртуальной реальности достигается полный контакт оператора с моделируемой средой, благодаря обратной связи, которая может охватывать практически все системы взаимодействия человека с “обычным” внешним миром. Значение этой возможности трудно переоценить в применении к имитационному моделированию как раз технических систем, управляемых человеком, который одновременно становится одним из звеньев этой системы (как принято говорить, “человеко-машинной” системы).

 

 

 

 

                     Виды имитационного моделирования

 

Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.

Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

 

Имитационное  моделирование

 

Аналитическое моделирование  сложных систем, очевидно, имеет  ограниченные возможности, что и вызвало к жизни имитационные модели (реализуемые в форме аппаратурных комплексов и программ для ЭВМ). Могут быть выделены следующие основные классы имитационных моделей:

 

- непрерывные;

- дискретные;

- пространственные.

 

В первом случае предметная область описывается совокупностью  динамических связей, отражающих развитие процесса во времени в форме конечно-разностных уравнений и рекуррентных соотношений. Модель воспроизводит поведение объекта за определенный период времени; в этом смысле имитационная модель является динамической. Значения всех переменных, входящих в имитационную модель, вычисляются в каждый момент модельного времени. Затем, через определенный интервал на основе старых значений вычисляются новые значения переменных, и т. д. Таким образом, имитационная модель «развивается» по определенной траектории в течение заданного отрезка модельного времени. Исходные аналитические модели — системы обыкновенных дифференциальных уравнений.

Второй тип моделей  описывает потоки случайных событий, проходящие через сложную совокупность путей и узлов, и направлен на исследование стационарных, установившихся процессов. Здесь в качестве аналитического прототипа выступает теория систем массового обслуживания.

В третьем случае рассматриваются  процессы, проходящие в пространстве (на плоскости или в объеме). Исходные аналитические модели — системы дифференциальных уравнений в частных производных, особенно часто — такой их класс, как уравнения математической физики.

Следует отметить, что в  настоящее время данная классификация  во многом становится условной, поскольку  современные интегрированные средства моделирования — ИСМ (например, отечественная  разработка Pilgrim [14] и её зарубежные аналоги) охватывают как непрерывные, так и дискретные, и пространственно-временные  процессы.

 

        Этапы имитационного моделирования.

 

Процесс последовательной разработки имитационной модели начинается с создания простой модели, которая затем постепенно усложняется в соответствии с требованиями, предъявляемыми решаемой проблемой. В процессе имитационного моделирования можно выделить следующие основные этапы:

   

 

1. Формулирование   проблемы:  описание  исследуемой  проблемы и определение целей исследования.

2. Разработка модели: логико-математическое  описание моделируемой системы в соответствии с формулировкой проблемы.

3.  Подготовка данных: идентификация, спецификация и сбор данных.

4. Трансляция модели:  перевод модели на  язык, приемлемый  для используемой ЭВМ.

5. Верификация: установление  правильности машинных программ.

6. Валидация: оценка требуемой  точности и соответствия имитационной модели реальной системе.

7. Стратегическое и тактическое  планирование: определение условий  проведения машинного эксперимента с имитационной моделью.

8. Экспериментирование: прогон  имитационной модели на ЭВМ  для получения требуемой информации.

9. Анализ результатов:   изучение  результатов  имитационного эксперимента для подготовки выводов и рекомендаций по решению проблемы.

10. Реализация и документирование:  реализация   рекомендаций, полученных на основе имитации, и составление документации по модели и ее использованию.

Первой задачей имитационного  исследования является точное определение проблемы и детальная формулировка целей исследования. Как правило, определение проблемы является непрерывным процессом, который обычно осуществляется в течение всего исследования. Оно пересматривается по мере более глубокого понимания исследуемой проблемы и возникновения новых ее аспектов.

Как только сформулировано начальное определение проблемы, начинается этап построения модели исследуемой системы. Модель включает статическое и динамическое описание системы. В статическом описании определяются элементы системы и их характеристики, а в динамическом — взаимодействия элементов системы, в результате которых происходят изменения ее состояния во времени.

Процесс формулирования модели во многом является искусством. Разработчик модели должен понять структуру системы, выявить правила ее функционирования и суметь выделить в них самое существенное, исключив ненужные детали. Модель должна быть простой для понимания и в то же время достаточно сложной, чтобы реалистично отображать характерные черты реальной системы. Наиболее важными являются принимаемые разработчиком решения относительно того, верны ли принятые упрощения и допущения, какие элементы и взаимодействия между ними должны быть включены в модель. Уровень детализации модели зависит от цели ее создания. Необходимо рассматривать только те элементы, которые имеют существенное значение для решения исследуемой проблемы. Как на этапе формулирования проблемы, так и на этапе моделирования необходимо тесное взаимодействие между разработчиками модели и ее пользователями. «Первый эскиз» модели должен быть построен, проанализирован и обсужден. Во многих случаях это требует от разработчиков большой ответственности и готовности продемонстрировать свое возможное незнание исследуемой системы. Однако эволюционный процесс моделирования позволяет быстрее обнаруживать допущенные разработчиками неточности и более эффективно их конкретизировать. Кроме того, тесное взаимодействие на этапах формулирования проблемы и разработки модели создает у пользователя уверенность в правильности модели и поэтому помогает обеспечить успешную реализацию результатов имитационного исследования.

На этапе разработки модели определяются требования к входным  данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуются время и усилия. Обычно значения таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входного параметра оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных.

Информация о работе Имитационное моделирование