Контрльная работа по "Статистике"

Автор работы: Пользователь скрыл имя, 13 Марта 2013 в 21:24, контрольная работа

Описание работы

Выборочное наблюдение
Выборочное наблюдение относится к разновидности несплошного наблюдения. Оно охватывает отобранную часть единиц генеральной совокупности. Цель выборочного наблюдения - по отобранной части единиц дать характеристику всей совокупности единиц. Чтобы отобранная часть была репрезентативна (т.е. представляла всю совокупность единиц), выборочное наблюдение должно быть специально организовано. Следовательно, в отличие от генеральной совокупности, представляющей всю совокупность исследуемых единиц, выборочная совокупность представляет ту часть единиц генеральной совокупности, которая является объектом непосредственного наблюдения.

Файлы: 1 файл

Выборочное наблюдение.doc

— 211.00 Кб (Скачать файл)

Бесповторный  отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить  нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ошибки выборки

Выборочную совокупность можно сформировать по количественному  признаку статистических величин, а  также по альтернативному или  атрибутивному. В первом случае обобщающей характеристикой выборки служит выборочная средняя величина, обозначаемая , а во втором — выборочная доля величин, обозначаемая w. В генеральной совокупности соответственно: генеральная средняя и генеральная доля р.

Разности  — и W — р называются ошибкой выборки, которая делится на ошибку регистрации и ошибку репрезентативности. Первая часть ошибки выборки возникает из-за неправильных или неточных сведений по причинам непонимания существа вопроса, невнимательности регистратора при заполнении анкет, формуляров и т.п. Она достаточно легко обнаруживается и устраняется. Вторая часть ошибки возникает из-за постоянного или спонтанного несоблюдения принципа случайности отбора. Ее трудно обнаружить и устранить, она гораздо больше первой и потому ей уделяется основное внимание.

Величина ошибки выборки может быть разной для  разных выборок из одной генеральной совокупности, поэтому в статистике определяется средняя ошибка повторной и бесповторной выборки по формулам:

- повторная;

- бесповторная;

где Дв — выборочная дисперсия.

Например, на заводе с численностью работников 1000 чел. проведена 5%-ая случайная бесповторная выборка с целью определения  среднего стажа работников. Результаты выборочного наблюдения приведены  в первых двух столбцах следующей  таблицы:

X, лет 
(стаж работы)

f, чел. 
(число работников в выборке)

Xиf

до 1

7

0,5

3,5

38,987

1-2

8

1,5

12,0

14,797

2-3

10

2,5

25,0

1,296

3-4

13

3,5

45,5

5,325

4-5

9

4,5

40,5

24,206

более 5

3

5,5

16,5

20,909

Итого

50

 

 

143,0

105,520


В 3-м  столбце определены середины интервалов X (как полусумма нижней и верхней  границ интервала), а в 4-м столбце - произведения XИf для нахождения выборочной средней по формуле средней арифметической взвешенной: 
 
= 143,0/50 = 2,86 (года). 
 
Рассчитаем выборочную дисперсию взвешенную: 
= 105,520/50 = 2,110. 
 
Теперь найдем среднюю ошибку бесповторной выборки: 
= 0,200 (лет).

Из формул средних  ошибок выборки видно, что ошибка меньше при бесповторной выборке, и, как доказано в теории вероятностей, она возникает с вероятностью 0,683 (то есть если провести 1000 выборок  из одной генеральной совокупности, то в 683 из них ошибка не превзойдет средней ошибки выборки). Такая вероятность (0,683) является невысокой, поэтому она мало пригодна для практических расчетов, где нужна более высокая вероятность. Чтобы определить ошибку выборки с более высокой, чем 0,683 вероятностью, рассчитывают предельную ошибку выборки:

где t – коэффициент доверия, зависящий от вероятности, с которой определяется предельная ошибка выборки.

Значения коэффициента доверия t рассчитаны для разных вероятностей и имеются в специальных таблицах (интеграл Лапласа), из которых в статистике широко применяются следующие сочетания:

Вероятность

0,683

0,866

0,950

0,954

0,988

0,990

0,997

0,999

t

1

1,5

1,96

2

2,5

2,58

3

3,5


Задавшись конкретным уровнем вероятности, выбирают из таблицы  соответствующую ей величину t и определяют предельную ошибку выборки по формуле. 
При этом чаще всего применяют  = 0,95 и t= 1,96, то есть считают, что с вероятностью 95% предельная ошибка выборки в 1,96 раза больше средней. Такая вероятность (0,95) считается стандартной и применяется по умолчанию в расчетах.

В нашем примере про средний стаж работников, определим предельную ошибку выборки при стандартной 95%-ой вероятности (из таблицы берем t = 1,96 для 95%-ой вероятности): = 1,96*0,200 = 0,392 (года).

После расчета  предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид

 
 
а для генеральной доли аналогично:


Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупности, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.

В нашем примере про средний стаж работников, определим доверительный интервал генеральной средней - среднего стажа работников: 
2,86 - 0,392 2,86 + 0,392 или 2,468 лет 3,252 лет. 
То есть средний стаж работников на всем заводе лежит в интервале от 2,468 года до 3,252 года.

Определение численности  выборки

Разрабатывая  программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулу средней ошибки повторной выборки и формулу средней ошибки бесповторной выборки в формулу предельной ошибки и, решая ее относительно численности выборки, получим следующие формулы: 
для повторной выборки n =  
для бесповторной выборки n = .

Кроме того, при  статистических величинах с количественными  принаками надо знать и выборочную дисперсию, но к началу расчетов и  она не известна. Поэтому она принимается приближенно одним из следующих способов (в приоритетном порядке):

  1. Берется из предыдущих выборочных наблюдений;
  2. Используется правило, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений ( , а так как , то отсюда );
  3. Используется правило «трех сигм», согласно которому в средней величине укладывается примерно 3 стандартных отклонения ( ; отсюда ).

При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле дисперсии доли соответствует выборочной дисперсии в максимальном размере Дв = 0,5*(1-0,5) = 0,25.

 

 

 


Информация о работе Контрльная работа по "Статистике"