Математические методы

Автор работы: Пользователь скрыл имя, 09 Января 2014 в 20:49, доклад

Описание работы

Математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.

Файлы: 1 файл

Математические методы.doc

— 111.50 Кб (Скачать файл)

Для количественной оценки степени влияния вычисляют показатель F по формуле:

,

где L — число градаций фактора, N — объем статистической совокупности.

Показатель влияния F затем сравнивается со стандартным  значением Fst в таблице Фишера (для выбранного уровня значимости при соответствующем числе степеней свободы). Если F > Fst то факт влияния считается достоверно доказанным.

Описанная схема  называется однофакторным дисперсионным  анализом.

Анализ  зависимости между признаками. Для оценки степени взаимозависимости двух количественных признаков чаще всего используют коэффициент ковариации или его нормированное значение — коэффициент корреляции:

где xи yi — значения первого и второго признаков в 1-м наблюдении, σи σ— стандартные отклонения первого и второго признаков; N — объем выборки, Х и Y — математические ожидания х и у.

При отсутствии связи  между признаками величина R равна 0, при возрастании степени связи абсолютная величина Rувеличивается. При наличии детерминированной (функциональной) связи величина R равна + 1 или - 1 (если увеличение одного признака сопровождается соответственно увеличением или уменьшением другого). При промежуточных значениях R каждому фиксированному значению одного признака отвечает некоторое распределение значений другого, с тем меньшей дисперсией, чем больше абсолютная величина R. В простейшем виде коэффициент корреляции отражает линейную связь между признаками, когда изменения обоих признаков пропорциональны во всем диапазоне.

При наличии нелинейной связи, например при квадратичной зависимости  одного признака от другого, коэффициент корреляции может быть равен нулю. В таких случаях для выявления связи применяют другой показатель — корреляционное отношение, которое фиксирует наличие любой связи между признаками. Область значений одного признака разбивается на участки, для каждого из них определяется среднее значение другого признака. Далее вычисляется корреляционное отношение:

,

где D— дисперсия второго признака за счет влияния первого, D — общая дисперсия второго признака. Величина корреляционного отношения, как и коэффициента корреляции, лежит между нулем и единицей.

Если исследуется  группа тесно связанных между  собой признаков, то корреляция между  двумя из них может сильно изменяться под влиянием третьего. Так, зависимость  АД от минутного выброса сердца существенно  меняется при изменениях сосудистого сопротивления. Для анализа подобных случаев применяют показатели частной корреляции, позволяющие нейтрализовать влияние третьих признаков. Частный коэффициент корреляции вычисляется на основе парных коэффициентов корреляции:

,

где Rxy (z) — частный коэффициент корреляции между признаками Х и Y при нейтрализации влияния признака Z, а Rxy,Rxz Ryz — парные коэффициенты корреляции.

В случае необходимости анализа влияния  нескольких признаков на один (множественная  корреляция) применяется более громоздкая, требующая больших объемов вычислений процедура.

Если  исследованию подлежит связь между  порядковыми признаками (например, связь между выраженностью реакции  Манту и степенью развития туберкулезного процесса), то применяют так называемый ранговый коэффициент корреляции — каждому уровню признака присваивается свой ранг, для каждого наблюдения вычисляется разница рангов.

Регрессионный анализ. Регрессией называется зависимость среднего значения одной случайной величины от некоторой другой (или от нескольких случайных величин), а регрессионным анализом — раздел математической статистики, объединяющий прикладные методы исследования регрессионных зависимостей. Регрессионный анализ приобрел большую популярность в связи с распространением ЭВМ.

Если xi и yi — наблюдаемые случайные величины, ei — случайная ошибка с нулевым математическим ожиданием, то регрессия записывается в виде:

yi = f (xi) + ei, i = 1, 2,..., N,

где f — функция регрессии.

Если xi — скалярная величина (число), то регрессия называется парной (связывающей пару случайных величин), если xi— вектор, то множественной.

Задачей регрессионного анализа является нахождение «наилучшей» функции f, описывающей зависимость у от х. Оценка производится либо по методу наименьших квадратов, либо по методу максимума правдоподобия (что возможно только при известном распределении величин у).

При использовании  регрессионного анализа важно правильно  выбрать вид и степень сложности  регрессионной модели. Классический путь состоит в учете биологических, физических и других предпосылок, а качество полученной модели оценивается по величине остаточных отклонений. Возможен способ проверки гипотезы линейности по остаточным отклонениям — вычисляется показатель нелинейности и производится проверка достоверности его отличия от нуля по критерию Фишера. Другой подход предложен в 1970-х гг. В.Н. Вапником: при малых выборках сложность регрессионной модели должна быть тем меньше, чем меньше объем выборки, имеющейся в распоряжении исследователя. Разработаны критерии оптимальной сложности регрессии в зависимости от дисперсии остаточных отклонений и объема выборки.

Факторный анализ — совокупность методов исследования многомерных признаков за счет снижения их размерности (путем введения так называемых общих факторов, которые непосредственно наблюдаться не могут). В медицине методы факторного анализа применяются для решения двух взаимосвязанных задач: группировки исходной системы признаков на основе их корреляционных связей и сжатия информации за счет построения системы обобщенных индикаторов.

В факторной  модели каждый исходный признак представляется в виде комбинации новых показателей (общих факторов), число которых, как правило, устанавливается меньше числа исходных. Такой метод описания удобен, например, для получения  обобщенных индексов, характеризующих состояние системы здравоохранения различных регионов или однородных учреждений (исходные показатели — заболеваемость, смертность, количество профосмотров — заменяются набором обобщенных показателей, определяющих ресурсное обеспечение, качество врачебного обслуживания и т.п.).

Недостатком факторного анализа является трудность  содержательной интерпретации общих  факторов.

Кластерный анализ — группа методов статистической обработки, которая включает методы классификации объектов, в т.ч. автоматические, на основе их сходства. Кластерный анализ, как и факторный, «сжимает» информацию. Но если факторный анализ снижает размерность пространства признаков, то кластерный уменьшает число рассматриваемых объектов. Совокупность объектов разбивается на кластеры — группы объектов, обладающие сходными свойствами, поэтому вместо всей группы можно рассматривать один объект, характеризующий ее. Так, ряд административных территорий может быть представлен в виде одного кластера, объединяющего регионы с одинаковой эпидемиологической обстановкой. Кластерный анализ включает методы, которые исходно не принимают во внимание вероятностную природу обрабатываемых данных. При постановке задач кластеризации число кластеров, на которое должно быть разбито исходное множество объектов, может задаваться заранее или выявляться в процессе решения.

Алгоритмы кластерного анализа направлены на получение наилучшего в определенном смысле качества разбиения совокупности объектов на группы.

Распознавание образов. Характерной особенностью одного из подходов к разработке алгоритма распознавания является применение обучающей выборки («обучение с учителем»). В качестве обучающей выборки используется группа объектов с заранее установленным классом принадлежности. При реализации другого подхода распознавания («без учителя») задача состоит в поиске такого способа классификации, который позволяет получать наилучшее разбиение групп объектов на классы (образы). Методы распознавания образов широко распространены в медицине — в машинной диагностике, при выделении групп риска, выборе альтернативных тактик лечения и т.д.

Разработано большое число подходов к распознаванию  образов. Наиболее часто применяются  методы дискриминантного анализа, метод  Бейеса, метод обобщенного портрета, метод ближайшего соседа.

Другие методы прикладной статистики (исследование временных рядов и краткосрочное прогнозирование развивающихся во времени процессов, планирование эксперимента и др.) учитывают специфику задач и возможности использования для их решения ЭВМ.

Если для решения каких-либо задач не удается найти строгие формальные методы, то прибегают к интуитивно найденным способам, эффективность которых проверяется на практике. Поскольку подобные приемы являются результатом и имитируют интеллектуальную деятельность человека, они получили название эвристик. Эвристические методы применяются для таких задач анализа данных, как классификация, распознавание образов и т.п.

Математическое моделирование  систем является вторым кардинальным направлением применения М.м. в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное  с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине). Иногда можно встретить и устаревшее значение термина «математическое моделирование» как процесса анализа модели на ЭВМ. Чтобы избежать путаницы, во втором случае используют понятие «вычислительный эксперимент».

В математическом моделировании выделяют несколько  этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. Модели в зависимости от используемого математического аппарата подразделяются на несколько классов. В медицине и биологии чаще всего применяются описания с помощью уравнений. В связи с созданием компьютерных методов решения так называемых интеллектуальных задач начали распространяться логико-семантические модели. Этот тип моделей используется для описания процессов принятия решений, психической и поведенческой деятельности и других явлений. Часто они принимают форму своеобразных «сценариев», отражающих врачебную или иную деятельность. При формализации более простых процессов, описывающих поведение биохимических, физиологических систем, задач управления функциями организма, применяются уравнения различных типов.

Если  исследователя не интересует развитие процессов во времени (динамика объекта), можно ограничиться алгебраическими  уравнениями. Модели в этом случае называются статическими. Несмотря на кажущуюся простоту, они играют большую роль в решении практических задач. Так, в основе современной компьютерной томографии лежит теоретическая модель поглощения излучения тканями организма, имеющая вид системы алгебраических уравнений. Решение ее компьютером после преобразований представляется в виде визуальной картины томографического среза.

Для описания свойств систем, изменяющихся во времени, используются динамические модели, чаще всего в виде обыкновенных дифференциальных уравнений:

,

где х1, х2..., xn — переменные, а1, а2,... am — параметры модели, u1, u2,..., u— внешние воздействия на систему, t — время, n = 1, 2,..., N.

Величина   — производная xi по времени (скорость изменения xi). Разница между переменными х и параметрами а в уравнении заключается в следующем. К переменным относятся такие величины, которые могут влиять друг на друга и согласованно изменяться под действием внешних воздействий во время изучения объекта. Параметры отражают те свойства объекта, которые характеризуются неизмененными значениями в течение всего времени изучения объекта (модель с неизмененными постоянными параметрами) или меняются со временем, но вне всякой связи с изменением переменных (модель с изменяющимися параметрами). Параметрами модели являются коэффициенты описывающих ее уравнений. Следует отличать указанный смысл термина «параметры модели» от принятого в биомедицинской литературе, где часто под параметрами понимаются любые количественные характеристики состояния организма или его систем.

После записи математической модели проводится ее анализ с точки зрения адекватности задаче, которую планируется решать с ее помощью, — верификация модели. Верификация состоит в том, что  на созданной модели воспроизводится (например, с помощью ЭВМ) круг моделируемых явлений или процессов, для которых имеется достоверный экспериментальный материал. При определенном совпадении результатов расчета с экспериментальными данными модель считается адекватной. В противном случае необходимо уточнять исходные концепции и допущения, а затем снова верифицировать модель. Удовлетворяющая исследователя модель анализируется и обсчитывается на ЭВМ, что и называется вычислительным экспериментом. При анализе результатов вычислительных экспериментов следует учитывать, что модель — всегда лишь упрощенное описание реальных явлений. Поэтому выводы, получаемые с помощью моделирования, требуют дополнительного осмысливания.

Информация о работе Математические методы