Способы задания функций

Автор работы: Пользователь скрыл имя, 30 Мая 2012 в 19:46, реферат

Описание работы

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции. Рассмотрим некоторые способы задания функций.
Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Файлы: 1 файл

вышка3.doc

— 32.00 Кб (Скачать файл)


3.Способы задания функций

 

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции. Рассмотрим некоторые способы задания функций.

 

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

 

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

 

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

 

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

 

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

 

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

 

Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

 

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

 

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

 

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

 

Функция может быть определена разными формулами на разных участках области своего задания.

 

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

 

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

 

Пример 1: функция E(x) — целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r — целое число (может быть и отрицательным) и q принадлежит интервалу [0; 1), то [x] = r. Функция E(x) = [x] постоянна на промежутке [r; r+1) и на нем [x] = r.

 

Пример 2: функция y = {x} — дробная часть числа. Точнее y ={x} = x  - [x], где [x] — целая часть числа x. Эта функция определена для всех x. Если x — произвольное число, то представив его в виде x = r + q ( r = [x]), где r — целое число и q лежит в интервале [0; 1), получим {x} = r + q - r=q

 

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

 

Область определения функции - это множество всех значений переменной х, при которых функция имеет смысл.

 

Для функций, заданных формулой, область определения находится исходя из следующих принципов:

Если функция — многочлен, то она существует при любых значениях аргумента, то есть ее область определения — все множество действительных чисел.

Если функция задана формулой, которая содержит аргумент в знаменателе дроби, то к области определения функции относят все действительные числа, кроме тех, которые при вычислении дают ноль в знаменателе.

Если функция задана формулой, которая содержит арифметический квадратный корень, то к области определения относится все множество действительных чисел, при которых подкоренное выражение является неотрицательным.

Область визначення функції — це множина допустимих значень аргументу функції. Вона позначається як D(y), якщо треба вказати область визначення функції y = f(x).

 

Если заданы: числовое множество и правило, которое позволяет сопоставить в соответствие каждому элементу из множества определенное число, говорят, что задана функция с областью определения. Определение области значений функции является необходимым условием определения функции.

Значения переменных, на которых задается функция, называют допустимыми значениями переменных.

 

Значения переменных, при которых значение функции имеет смысла, называют допустимыми значениями аргумента. Множество всех допустимых значений аргумента называют областью допустимых значений аргумента функции.

 



Информация о работе Способы задания функций