Статистическое изучение основных фондов

Автор работы: Пользователь скрыл имя, 04 Марта 2014 в 14:29, курсовая работа

Описание работы

Задачи: изучить отдельно главу выборочные наблюдения в статистике, в ней рассмотреть понятие о выборочном исследовании, принципы образования выборочных совокупностей, понятие ошибки выборки и методы ее определения. Затем отдельно рассмотреть статистическое изучение основных фондов: предмет, метод и задачи статистического изучения основных фондов, систему показателей, характеризующих основные фонды и статистические методы и их применение в изучении основных фондов.

Содержание работы

Введение…………………………………………………………………………………..3
Глава 1. Выборочное наблюдение в статистике
1.1. Понятие о выборочном исследовании………………………………………4
1.2. Принципы образования выборочных совокупностей……………………..7
1.3 Понятие ошибки выборки и методы её определения……………………. 10
Глава 2. Статистическое изучение основных фондов
2.1.Предмет, метод и задачи статистического изучения основных фондов……14
2.2.Система показателей, характеризующих основные фонды…………………17
Глава 3. Расчетная часть………………………………………………………………..20
Заключение………………………………………

Файлы: 1 файл

kursovaya.docx

— 151.61 Кб (Скачать файл)

 Серийный отбор

При серийном (гнездовом) отборе выборке подлежат не отдельные единицы совокупности, а целые группы, серии или гнёзда, в состав которых входят единицы, связанные определённым образом: например, территориально (селения, районы и др.), организационно (студенческие группы, предприятия и т.д.), упаковкой (продукция, оформляемая в пачки, коробки, ящики, и т.д.) и др. группы. Отбор серий может быть организован как собственно-случайная или механическая выборка. Внутри отобранных серий проводится сплошное наблюдение или выборочное.

 

1.3. Понятие ошибки выборки и методы её определения

 
Понятие ошибки выборки

Задача выборочного наблюдения - дать верное представление о сводных показателях всей совокупности факторов на основе некоторой их части, подвергнутой обследованию, т.е. определение характеристик генеральной совокупности по выборочным данным. Чаще других при выборочном наблюдении исследуется либо среднее значение того или иного признака у единиц совокупности (например, средняя урожайность, средняя заработная плата и т.д.), либо доля единиц обладающих тем или иным признаком, т.е. удельный вес определённых единиц в совокупности (например, доля орошаемых земель, доля отдельных пород деревьев в лесном массиве и т.д.).

Поскольку речь идёт о варьирующих признаках и изучают не всю совокупность единиц, а только их часть, то можно заранее сказать, что сводные показатели по этим признакам у части единиц совокупности почти никогда не будут абсолютно совпадать со сводными показателями всей статистической совокупности. Выборочные показатели, как правило, не совпадают с соответствующими показателями генеральной совокупности, а несколько отличаются от них в одну или другую сторону, т.е. при выборочном наблюдении всегда могут возникнуть ошибки, которые можно подразделить на ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации при выборочном наблюдении, как и при сплошном, могут возникнуть по разным причинам: и по вине того, кто проводит наблюдение, и по вине отвечающего на те или иные вопросы, и от способа наблюдения. Но если тщательно провести подготовку кадров и продумать организацию проведения наблюдения, то в силу ограниченности выборочной совокупности (по сравнению с генеральной совокупностью) ошибки регистрации можно свести к минимуму или, во всяком случае, уменьшить их по сравнению с ошибками регистрации сплошного наблюдения.

Ошибка репрезентативности (представительства) свойственна лишь выборочному наблюдению и представляет собой величину возможных расхождений между показателями выборочной и генеральной совокупности.

Ошибки репрезентативности в свою очередь могут иметь случайный характер и систематический.

Систематическая ошибка - это ошибка, тенденциозно искажающая величину исследуемого признака в сторону её увеличения или уменьшения. Возникает она главным образом в результате нарушения случайности отбора.

Случайная ошибка - это ошибка, имеющая одинаковую величину вероятности в сторону уменьшения или увеличения изучаемого показателя; это ошибка, появление которой возможно в результате сущности содержания самого выборочного (не сплошного) наблюдения, в силу того, что исследуется часть, а не вся статистическая совокупность.

Определение величины случайных ошибок репрезентативности и является одной из главных задач теории выборочного метода. Их фиксирование позволяет судить о точности выборки, о возможности распространения выборочных характеристик на генеральную совокупность.

Случайные ошибки выборки определяются по формулам, разработанным на основе теории вероятностей и носят вероятностный характер. 
Методы определения ошибки выборки

Возможные расхождения между характеристиками выборочной и генеральной совокупности измеряются средней ошибкой выборки. В математической статистике, которая лежит в основе всех расчётов показателей выборочных совокупностей, доказывается, что значения средней ошибки выборки определяются по формуле:

                                                                (1)  


                                 

Использование данной формулы предполагает, что известна генеральная дисперсия. Но при проведении выборочных исследований эти показатели, как правило, неизвестны. Применение выборочного метода как раз и предполагает определение характеристик генеральной совокупности.

На практике для определения средней ошибки выборки обычно используются дисперсии выборочной совокупности. Эта замена основана на том, что при соблюдении принципа случайного отбора дисперсия достаточно большого объёма выборки стремиться отобразить дисперсию в генеральной совокупности.

В математической статистике доказано следующее соотношение между дисперсиями в генеральной и выборочной совокупностях:

 


                                                         (2)

 

Из приведённой формулы видно, что дисперсия выборочной совокупности меньше дисперсии в генеральной совокупности на величину определяемую отношением:


                        (3)

Если n достаточно велико, то данное отношение близко к единице.

Например, при n = 100 оно равно 1,01, а при n = 500 оно равно 1,002. Поэтому с определённой долей погрешности формулу расчёта средней ошибки выборки можно представить в следующем виде.


                       (4)

 

Однако следует иметь в виду, что данная формула применяется для определения средней ошибки выборки лишь при повторном отборе. Поскольку при бесповторном отборе численность генеральной совокупности N в ходе выборки сокращается, то в формулу для расчёта n средней ошибки выборки включают дополнительный множитель. Формула средней ошибки выборки принимает следующий вид:


                                                                         (5)

Для практики выборочных обследований важно, что средняя ошибка выборки применяется для установления предела отклонений характеристик выборки из соответствующих показателей генеральной совокупности. Лишь с определённой степенью вероятности можно утверждать, что эти отклонения не превысят величины t u, которая в статистике называется предельной ошибкой выборки.

Предельная ошибка выборки связана со средней ошибкой выборки u отношением:                                                                      (6)


При этом t как коэффициент кратности средней ошибки выборки зависит от вероятности, с которой гарантируется величина предельной ошибки выборки. Обычно в практике экономических исследований обычно ограничиваются значением t не превышающим двух трёх единиц.

Вывод: Проблемы применения конкретных видов выборочного наблюдения для решения тех или иных теоретических или прикладных задач решаются с учетом их специфики.

Выборочное наблюдение широко используется для: 1) статистического оценивания и проверки гипотез; 2) решения производственных и управленческих задач; 3) отраслевых социально-экономических исследований; 4) разрешения задач в сфере предпринимательской деятельности.

Совершенствование теории и практики выборочного наблюдения, все более широкое применение различных сочетаний комбинированного, многоступенчатого отбора, современных компьютерных технологий информационной обработки в значительной мере расширяют области использования, скорость получения и качество результатов выборочного наблюдения.

 

 

 

Глава 2.Статистическое изучение основных фондов

 

2.1 Предмет, метод и задачи статистического изучения основных фондов

 

 

Основные фонды – это производственные активы, часть национального имущества, созданная общественным трудом, которая длительное время неоднократно или постоянно в неизменной натурально-вещественной форме используется в экономике, постепенно перенося свою стоимость на создаваемые продукты и услуги.

Существуют материальные основные фонды: здания (кроме жилья), машины и оборудования, транспортные средства, инструмент, производственный и хозяйственный инвентарь, рабочий скот, многолетние насаждения; а также нематериальные – расходы на разведку полезных ископаемых, затраты на программное обеспечение и базы данных ЭВМ, оригиналы материальных и художественных произведений, являющиеся основой для их тиражирования. Основные фонды делятся на производственные и непроизводственные. Основные производственные фонды – это средства труда, целиком участвующие в повторяющихся процессах производства и переносящие по частям свою стоимость на готовый продукт по мере износа. К ним относятся здания, сооружения, машины и оборудования, рабочий скот и другие основные фонды, функционирующие в сфере материального производства. Так как различные виды основных производственных фондов выполняют не одинаковую роль в производственном процессе, то их делят на активные и пассивные. Активная часть основных фондов – это совокупность основных производственных фондов, которые непосредственно воздействуют на предметы труда (машины, оборудования, инвентарь). К пассивной части основных производственных фондов относятся основные фонды, посредством которых обеспечиваются условия для нормального протекания процесса производства (здания, сооружения). Основными непроизводственными фондами являются материальные блага длительного пользования, не участвующие в процессе производства и являющиеся объектом общественного и личного потребления (жилые здания, школы, клубы, поликлиники, кинотеатры, транспортные средства непроизводственного назначения). Воспроизводство основных непроизводственных фондов осуществляется путем финансирования из средств бюджета.

Так как основные фонды функционируют длительное время и снашиваются по частям, то в каждый конкретный момент времени любой их элемент может иметь несколько денежных оценок. Вообще, основные фонды в процессе производства выступают в натуральной и стоимостной формах. Натуральная форма – учет средств, необходимых для определения технического состава фондов, производственной мощности предприятия, степени использования оборудования. Натуральные показатели содержатся в паспортах предприятий, включающих характеристику и число отдельных объектов. Стоимостная форма– оценка основных фондов, необходимая для определения их общего объема, динамики, структуры, величины стоимости, переносимой на стоимость годового продукта. Рассмотрим подробнее методы оценки основных фондов.

1. Балансовая стоимость. Оценка основных фондов по  данной стоимости учитывает их  момент постановки на учет  в бухгалтерском балансе. Она  представляет собой смешанную  оценку основных фондов, так как  часть объектов числится на  балансах по восстановительной  стоимости на момент последней  переоценки, а основные фонды, введенные  в последующий период, учитываются  по первоначальной стоимости (стоимости  приобретения);

2. Первоначальная стоимость (ПС). Это балансовая фактическая  стоимость основных фондов на  момент их ввода в эксплуатацию;

3. Полная первоначальная  стоимость (ППС). Это стоимость, по  которой фонды передаются на  баланс предприятия. В неё входит  стоимость и затраты по приобретению, транспортировке, хранению и монтажу;

4. Остаточная первоначальная  стоимость (ОПС).

ОПС=ППС - амортизация;               (7)

 

5. Первоначальная стоимость за вычетом износа

ПС - амортизация;                        (8)

 

6. Восстановительная стоимость (ВС). Это расчетные затраты на  восстановление в современных  условиях точной копии основных  фондов с использованием аналогичных  материалов и сохранением всех  эксплуатационных параметров;

7. Полная восстановительная  стоимость (ПВС). Это сумма денежных  средств, которую надо было бы  потратить на приобретение имеющихся  основных фондов в их первоначальном  виде по действующим в данный  момент ценам;

8. Остаточная восстановительная  стоимость (ОВС).

ОВС=ПВС – амортизация;                 (9)

 

9. Восстановительная стоимость за вычетом износа

ВС – амортизация;                           (10)

 

10. Ликвидационная стоимость. Это стоимость реализации изношенных  и снятых с производства основных  фондов.

Денежное выражение физического и морального износа основных фондов называется в статистике амортизацией. Она характеризует ту часть стоимости основных производственных фондов, которую они теряют в процессе производства и переносят на производимый продукт. Снашивание фондов определяется через амортизационные отчисления, включаемые в себестоимость продукции. По мере реализации продукции денежные суммы, соответствующие снашиванию основных фондов, накапливаются в так называемом амортизационном фонде, назначением которого является обеспечение полного восстановления выбывших основных фондов. Годовая сумма амортизационных отчислений (А) определяется по формуле:


                                                                                   (11)

где Фполн - полная первоначальная стоимость основных фондов; Фл – это ликвидационная стоимость; КР – общая сумма предполагаемых затрат на капитальный ремонт ив течение амортизационного периода; Т – продолжительность амортизационного периода в годах.

Годовая норма амортизации (Na):

                                                                          


                                                                           (12)

Информация о работе Статистическое изучение основных фондов