Этапы развития электротехники

Автор работы: Пользователь скрыл имя, 20 Апреля 2014 в 23:24, реферат

Описание работы

Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в родное хозяйство и быт, и сегодня нет такой области техники, в том или ином виде не использовалась бы электрическая энергия в будущем ее применение будет еще более расширяться.
Это определение можно раскрыть более подробно, выделив основные области, в которых используют электрические и магнитные явления: преобразование энергии природы (энергетическая); превращение вещества природы (технологическая); получение и передача сигналов или информации (информационная).

Файлы: 1 файл

Введение.docx

— 39.93 Кб (Скачать файл)

 

  1. Сэр Гемфри Дэви и практическое применение электричества. 
    Гемфри Дэви (1778-1829) родился в маленьком городке Пензансе на юго-западе Англии. Об этой местности есть старинная поговорка: "Южный ветер приносит туда ливни, а северный - возвращает их". 
    В первые годы XIX века Дэви увлекся изучением действия электрического тока на различные вещества, в том числе на расплавленные соли и щелочи. Тридцатилетний ученый сумел в течение двух лет получить в свободном виде шесть ранее неизвестных металлов: калий, натрий, барий, кальций, магний и стронций. Это стало одним из самых выдающихся событий в истории открытия новых химических элементов, особенно если учесть, что щелочи в то время считались простыми веществами. 
    Однажды во время опытов с неизвестными металлами произошло несчастье: расплавленный калий попал в воду, произошел взрыв, в результате которого Дэви жестоко пострадал. Неосторожность обернулась для него потерей правого глаза и глубокими шрамами на лице.

Дэви пытался разложить электролизом многие природные соединения, в том числе и глинозем. Он был уверен, что и в этом веществе содержится неведомый металл. Ученый писал: "Если бы мне посчастливилось получить металлическое вещество, которое я ищу, я бы предложил для него название - алюминий". Ему удалось получить сплав алюминия с железом, а чистый алюминий был выделен лишь в 1825 году, когда Дэви уже прекратил свои эксперименты, датским физиком Х.К. Эрстедом. 
В течение своей жизни Гемфри Дэви неоднократно возвращался к проблемам получения металлов, хотя его интересы были весьма разносторонними. Так, в 1815 году он сконструировал безопасную рудничную лампу с металлической сеткой, которая спасла жизнь многим шахтерам, а в 1818 году получил в чистом виде еще один щелочной металл - литий.

 

  1. Опыты Г.Х. Эрстеда 
    Вопрос о взаимоотношении электричества и магнетизма еще долгое время оставался неясным, хотя многочисленные факты говорили об их тесной связи. Так, во время гроз перемагничивались стрелки компасов и намагничивались железные предметы. Но только в 1820 году было сделано решающее открытие в этом вопросе. А вот одна из версий этого события.

15 февраля 1820 года профессор  Копенгагенского университета Ханс Кристиан Эрстед (1777-1851), читая лекции студентам, демонстрировал тепловое действие тока. Случайно около нагреваемой пропускаемым по ней током проволоки оказался компас, не убранный с предыдущего занятия. Один из студентов обратил внимание, что стрелка компаса поворачивается, когда по проволоке идет ток, и указал на это профессору. Так было открыто магнитное действие тока. 
Когда 43-летний копенгагенский профессор Ганс Христиан Эрстед (1777...1851) разослал европейским коллегам свой ставший сразу знаменитым «Памфлет» о действии электрического тока на магнитную иглу – всего четыре странички на латинском языке – и когда многие ученые смогли с ним познакомиться, их удивлению не было границ. Неужели ток действует на магнит столь странно?

 

Чтобы разобраться в «проблеме Эрстеда», которую бесспорно следует считать ключевой в учении об электричестве и магнетизме, нужно вернуться на два столетия назад и представить себе маленький датский остров Лангеланд, городок на нем под названием Рюдкобинг и семью бедного аптекаря, в которой родился Ганс Христиан. Нужда гналась за семьей по пятам, и начальное образование братьям Гансу Христиану и Андерсу пришлось получать где придется: городской парикмахер учил их немецкому; его жена – датскому; пастор маленькой церквушки научил их правилам грамматики, познакомил с историей и литературой; землемер научил сложению и вычитанию, а заезжий студент впервые рассказал им удивительные вещи о свойствах минералов, пробудил любознательность и приучил любить аромат тайны. 
21 июля 1820 года вышла в свет работа Эрстеда, в которой описание самого опыта заняло лишь несколько строк, а объяснение было нечетким, а порою и неверным. Но он высказал мысль о существовании вихревого магнитного поля вокруг проводника с током. 4 сентября о работах Эрстеда было сообщено на заседании Парижской Академии наук, и уже через три недели появился новый раздел физики - электродинамика, творцом которой стал преподаватель Политехнической школы в Париже и член Парижской Академии наук Ампер. 
Его талант, упорство и случайность сплелись в счастливый клубок, и вот он, блестяще защитив диссертацию, едет по направлению университета на годичную стажировку во Францию, Германию, Голландию. В то время он скорее был философом, чем физиком. Его новые друзья – большей частью философы. Много времени он провел в Германии. Там он слушал лекции Фихте о возможностях исследований физических явлений с помощью поэзии, о связи физики с мифологией. Ему нравились лекции Шлегеля, но Эрстед не мог согласиться с ним в необходимости отказа от непосредственного, экспериментального исследования физических явлений.

 

  1. Первые электроизмерительные приборы 
    Первый в мире электроизмерительный прибор - "электрический указатель или электрический гномон" - был создан на основе, видимо, совместного труда Ломоносова и Рихмана. Рихман описал этот прибор в статье: "Об указателе електрическом и его употреблении при опытах електрических, как натурою, так и искусством произведенных".

 

 Прикрепленная к вертикальной  железной изолированной линейке  шелковая нить отталкивалась  от линейки при приведении  последней в соприкосновение  с наэлектризованным телом. Квадрант, укрепленный на столике с вертикально  установленной железной линейкой, позволял по его шкале производить  измерения получаемого между  нитью и линейкой угла, пропорционального  величине электрического заряда.

 Уотсон и другие зарубежные и русские исследователи считают электрический указатель, созданный в России, родоначальником всех современных электроизмерительных приборов. Этот указатель был создан русскими учеными в связи с их участием в международном труде по изучению электричества.

 

 В июне 1752 г. в "Санкт-Петербургских  ведомостях" появилось известие  о том, что Бенджамен Франклин произвел опыты "для изведания, не одинакова ль материя молнии и електрической силы".

 Русские исследователи  тогда поделились своим опытом  в связи с известием о зарубежном  изучении молнии как одного  из электрических явлений. Ломоносов  и Рихман, независимо от зарубежных исследователей, создали оригинальные "громовые машины" и произвели с ними опыты в том же 1752 г. Ломоносов в связи с этим писал впоследствии, что он "ничем не обязан Франклину".

 

 В июле месяце того  же года, когда появилось сообщение  об опытах Франклина, в "Санкт-Петербургских  ведомостях" напечатано описание  опытов Г. В. Рихмана, произведенных для изучения электричества, действующего во время гроз. В "Ведомостях" сообщалось:

"Понеже в разных  ведомостях объявлено важнейшее  изобретение, а именно: что електрическая материя одинакая с материей грома, то здешний профессор физики экспериментальной г. Рихман удостоверил себя о том и некоторых смотрителей..."

 

 Для проведения опытов  Рихман применил следующую установку:

"Из середины дна  бутылки выбил он иверень и сквозь бутылку продел железной прут, длиною от 5 до 6 футов, толщиною в один палец, тупым концом и закрыл горло ее коркою.

 

 После велел он из  верхушки кровли вынуть черепицу  и пропустил туда прут, так  что он от 4 до 5 футов высунулся, а дно бутылки лежало на  кирпичах. К концу прута, который под кровлей из-под дна бутылочного высунулся, укрепил он железную проволоку и вел ее до среднего аппартамента все с такой осторожностью, чтобы проволока не коснулась никакого тела, производящего електрическую силу. Наконец, к крайнему концу проволоки приложил он железную линейку так, что она перпендикулярно вниз висела, и к верхнему концу линейки привязал шелковую нить, которая с линейкой параллельно, а с широчайшей стороной линейки в одной плоскости висела".

 Соорудив установку, исследователь  стал ожидать грозы: "...с великою  нетерпеливостью ожидал грому, которой 18 июля в полдень и случился". Хотя "гром повидимому был не близко от строения", электрический указатель начал действовать. Электрические искры были получены и непосредственно во Бремя грома, и во время дождя, и после грома. Опыт продолжался полтора часа и привел к заключению;

"Итак совершенно доказано, что електрическая материя одинакова с громовой материей".

 

 Через неделю в "Ведомостях" появилось сообщение: Рихман повторил 21 июля опыты, применяя лейденскую банку, и снова убедился, что "материя грома не разнится... от електрической материи..."

 Одновременно с Рихманом опыты по изучению электричества производил Ломоносов. Однако описание его опытов не сохранилось. Имеется только краткая запись в его отчете за 1752 г.

 

  1. Аркюэльское созвездие и электромагнетизм

Старшим из аркюэльского созвездия был Лаплас - старше остальных более чем на двадцать лет. Обычно ему приписывают крестьянское происхождение. Однако он получил хорошее образование. Для выпускников бенедиктинской школы, которую окончил Лаплас, уготовано было два пути - церковь и армия. Семья настаивала на церковной карьере, но великолепные успехи Пьера Симона Лапласа в литературе и математике решили проблему - поначалу Пьер Симон занялся искусствами. Позже, однако, он отправился в Париж с рекомендательным письмом к знаменитому математику д'Аламберу, который способствовал его назначению профессором математики в военной школе. Там-то Лаплас впервые и встретился с молодым Наполеоном. Подружившись с ним, а затем женившись на внучке знаменитого французского математика Фурье, Лаплас в дополнение к своему большому математическому таланту приобрел и влияние административное, столь способствовавшее французским успехам в изучении электричества.

 

Современники писали о нем: "Лаплас был рожден довести все до совершенства, все исчерпать, решить все, что решению поддается. Он бы завершил и небесную механику, если бы наука эта имела конец". Некоторые называли его Ньютоном своего времени. Лаплас умер ровно через сто лет после Ньютона - 5 марта 1827 года, явившись на склоне лет свидетелем расцвета французских, да и не только французских, исследований.

 

Другому члену этого славного созвездия - Жану Батисту Био, старшему из остальных, суждена была грустная доля пережить всех своих соратников. Его жизнь была наполнена разнообразной и блестящей деятельностью. Начал он с артиллериста, затем попал в Политехническую школу, откуда вышел первоклассным математиком. Потом - профессор в Центральной школе, чем только не занимавшийся: он обследовал только что упавшие метеориты, запускал с Гей-Люссаком воздушные шары, мерил вместе с Араго дугу меридиана на Балеарских островах, помогал Ньепсу - одному из изобретателей фотографии; кстати, одну из самых первых в мире фотографий сделали с Био.

 

Савар был моложе Био на семнадцать лет. В историю он вошел как один из создателей "закона Био-Савара-Лапласа" - математической зависимости, связывающей величину магнитного поля, создаваемого током, с величиной этого тока.

 

Следующий член сообщества - Доминик Франсуа Жан Араго был на пять лет старше Савара. Он отличался от прочих членов прежде всего своим огненным темпераментом - уже его фамилия выдает испанское происхождение. Отец его владел плантациями винограда и оливковых деревьев. Учился Араго в Париже в Политехнической школе - там, где как раз сооружались по приказу Наполеона гигантские вольтовы столбы. Покровительство Лапласа сделало для Араго возможным, при его блестящих способностях, стать Секретарем Парижской обсерватории, где он познакомился с Био. В книге "История моей юности" Араго со вкусом описывал приключения в Северной Африке, свою работу во Франции, свои поразительные успехи в науке. Он стал членом Академии наук двадцати трех лет. Его книги до сих пор не потеряли в большой мере своей ценности. Его наблюдения над грозами на суше и в море легли в основу книги "Гром и молния", из которой мы приводили большое число интересных до сего времени выдержек.

 

И, наконец, последний из созвездия, формально не входивший в "Общество", - Ампер. Последний, разумеется, лишь по порядку, но не по той роли, которую его труды сыграли в истории науки, может быть, стоит даже сказать - человеческой цивилизации.

 

  1. Андре Мари Ампер - основатель электродинамики 
    Сын лионского коммерсанта Андрэ Мари Ампер (1775-1836) с юных лет посвятил себя занятиям по математике, физике и химии. Его жажда знаний была столь велика, что четырнадцатилетним мальчиком он проштудировал все 20 томов "энциклопедии" Даламбера и Дидро и в скорости изучил латынь, греческий и итальянский языки для чтения трудов ученых в подлинниках. Сообщение об "электрическом магнетизме" настолько захватило Ампера, что он тут же поставил точнейшие опыты и на очередном заседании 25 сентября доложил разработанные им основные положения электродинамики. 
    Прежде всего, Ампер установил связь между направлением тока в проводнике и направлением отклонения магнитной стрелки - "правило пловца", или, по-современному, "правило левой руки". Здесь же он показал взаимодействие двух прямых параллельных проводников с током. Продолжая работать над темой, Ампер к 1826 году вывел количественный закон для силы взаимодействия электрических токов, ставший основным законом всей электродинамики. И это лишь малая толика из работ Ампера.
 

Ампер в те же годы предложил проект стрелочного телеграфа на основе открытия Эрстеда, но его проект был совершенно непрактичным, ибо он, как и Земмеринг, предлагал использовать отдельную проволоку и иметь отдельную стрелку для каждой буквы алфавита или иного знака. Был непрактичен и телеграф Ричи, по сути, повторявший телеграф Ампера и выставленный для обозрения в Эдинбурге в те же годы. Кроме того, в это же время в Европе входил в обиход оптический телеграф француза Шаппа, сыгравший заметную роль в развитии связи в Европе в 19 веке.

Информация о работе Этапы развития электротехники