Контрольная работа по «Схемотехника устройств радиосвязи, радиовещания и телевидения»

Автор работы: Пользователь скрыл имя, 04 Февраля 2014 в 22:18, контрольная работа

Описание работы

1. Основные характеристики стабилитронов и использование их в качестве источников опорного напряжения. 2. Рассчитать коэффициенты усиления каскада по напряжению и нижнюю границу полосы пропускания.

Файлы: 1 файл

контрольнаяСУРРИТ.doc

— 946.50 Кб (Скачать файл)

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

 

Институт информационных технологий

 

 

 

 

 

 

 

 

 

 

Специальность________«СРРиТ»________________

КОНТРОЛЬНАЯ РАБОТА

По курсу_ «Схемотехника устройств радиосвязи, радиовещания и телевидения»_

Вариант №__15__

 

 

 

 

 

 

 

 

 

 

 

Студент-заочник__4_ курса____

Группы _№__982922__________

ФИО _Демко_Валерий________

Леонидович__________________

Адрес_г.Лепель_ул. Интернац д.32_кв. 28_________________

Тел. (033)6137036____________

 

 

 

 

 

 

 

 

Минск, 2013

1. Основные характеристики стабилитронов и использование их в качестве источников опорного напряжения.

 

Полупроводниковый стабилитрон, или диод Зенера — плоскостной кремниевый полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей Ома до сотен Ом. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов.

Основное назначение стабилитронов — стабилизация напряжения. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «суппрессоры», «TVS-диоды») применяются для защиты электроаппаратуры от перенапряжений.

Токи и напряжения стабилизации. Режим стабилизации возможен в достаточно широкой области токов и напряжений, поэтому в технической документации указываются допустимые минимальные и максимальные значения (Iст.макс, Uст.макс) токов (Iст.мин, Iст.макс) и напряжений (Uст.мин, Uст.макс) стабилизации. Внутри этих диапазонов лежат выбранные производителем номинальные значения Iст и Uст. Минимальный ток стабилизации обычно приравнивается к току на выходе из зоны перелома обратной ВАХ, максимальный ограничен допустимой рассеиваемой мощностью, а номинальный ток обычно устанавливается на уровне от 25 до 35 % от максимального. Минимальные токи низковольтных лавинных диодов измеряются единицами и десятками микроампер, минимальные токи «обычных» стабилитронов — единицами миллиампер.

Например, номинальное напряжение советского стабилитрона 2С133В, как следует из его обозначения, равно 3,3 В, а номинальный ток стабилизации — ток, при котором измеряются его паспортные характеристики — равен 5 мА. Минимальный ток стабилизации для всех рабочих температур (—60…+125° С) установлен на уровне 1 мА, максимальный — зависит от температуры и атмосферного давления. При нормальном атмосферном давлении и температуре, не превышающей +35° С, ток не должен превышать 37,5 мА, а при температуре +125° С — 15 мА. При снижении давления до 665 Па (5 мм рт.ст, или 1/150 нормального атмосферного давления) максимальные токи снижаются вдвое из-за худшего теплоотвода в разреженной среде. Паспортный разброс напряжения стабилизации (Uст.мин…Uст.макс) этого прибора нормируется для тока 5 мА и четырёх различных температур от —60° С до +125° С. При —60° С разброс напряжений составляет 3,1…3,8 В, при +125° С — 2,8…3,5 В.

Дифференциальное, или  динамическое сопротивление стабилитрона равно отношению приращения напряжения стабилизации к приращению тока стабилизации в точке с заданным (обычно номинальным) током стабилизации. Оно определяет его нестабильность прибора по напряжению питания (по входу) и по току нагрузки (по выходу). Для уменьшения нестабильности по входу стабилитроны запитывают от источников постоянного тока, для уменьшения нестабильности по выходу — включают между стабилитроном и нагрузкой буферный усилитель постоянного тока на эмиттерном повторителе или операционном усилителе, или применяют схему составного стабилитрона. Теоретически, дифференциальное сопротивление стабилитрона уменьшается с ростом тока стабилизации. Это правило, сформулированное для условия постоянной температуры p-n-перехода, на практике действует только в области малых токов стабилизации. При больших токах неизбежный разогрев кристалла приводит к росту дифференциального сопротивления, и как следствие — к увеличению нестабильности стабилизатора.

Для маломощного стабилитрона 2С133В  дифференциальное сопротивление при минимальном токе стабилизации 1 мА равно 680 Ом, а при номинальном токе в 5 мА и температурах от —60 до +125° С не превышает 150 Ом он не превышает 150 мА. Стабилитроны большей мощности на то же номинальное напряжение имеют меньшее дифференциальное сопротивление, например, КС433А — 25 Ом при 30 мА. Дифференциальное сопротивление низковольтных лавинных диодов (LVA) примерно на порядок ниже, чем в «обычных» стабилитронах: например, для LVA351 (напряжение 5,1 В, мощность 400 мВт) оно не превышает 10 Ом при токе 10 мА. Внутри каждого семейства стабилитронов (одной и той же максимальной мощности) наименьшие абсолютные значения дифференциального сопротивления при заданном токе имеют стабилитроны на напряжение 6 В.

ГОСТ определяет температурный  коэффициент напряжения как «отношение относительного изменения напряжения стабилизации к абсолютному изменению температуры окружающей среды» при заданном постоянном токе стабилизации. ТКН обычных, не термокомпенсированных диодов, при их номинальных токах составляет для стабилитронов туннельного пробоя (Uст<4 Eg) от −0,05 до −0,1 %/°C, а для стабилитронов лавинного пробоя (Uст<4 Eg) — от 0,05 до 0,1 %/°C. Иными словами, при нагреве стабилитрона от +25° С до +125° С сдвиг напряжения стабилизации составит от 5 до 10 % начального значения.

В области малых и средних  токов на вольт-амперных характеристиках стабилитронов на напряжение 4,5…6,5 В можно найти точку (значение тока ITK0 и напряжения UTK0), в которой температурный коэффициент близок к нулю. Если стабилизировать ток стабилитрона внешним источником тока на уровне, точно равном ITK0, то напряжение на стабилитроне, равное UTK0, будет практически независимым от температуры. Такой подход применяется в интегральных стабилитронных источниках опорного напряжения, но не применим к устройствам на дискретных стабилитронах. Точное значение ITK0 можно определить только опытным путём, что в условиях серийного производства неприемлемо. Стабилитроны на напряжение менее 4,5 В также имеют точку нулевого ТКН, но она достигается лишь при запретительно высоких токах. Стабилитроны на напряжение свыше 6,5 В имеют положительный (ненулевой) ТКН во всём диапазоне токов.

Дрейф и шум обычных, не прецизионных, стабилитронов нормируются редко. Для прецизионных стабилитронов  это, напротив, важнейшие показатели наравне с начальным разбросом и ТКН. Высокий уровень шума обычных стабилитронов обусловлен высокой концентрацией загрязнений и дефектов кристаллической решётки в области p-n-перехода. Защитная пассивация оксидом или стеклом, при которой эти примеси выталкиваются из приповерхностных слоёв в толщу кристалла, снижает шумы лишь отчасти. Радикальный способ снижения шума — выталкивание вглубь кристалла не примесей, а самого p-n-перехода — применяется в малошумящих стабилитронах со скрытой структурой. Лучшие образцы таких приборов имеют размах низкочастотных (0,1—10 Гц) шумов не более 3 мкВ при длительном дрейфе не более 6 мкВ за первые 1000 часов эксплуатации.

Наибольший уровень  шумов стабилитрона наблюдается  в области перелома вольт-амперной характеристики. Инструментально снятые кривые высокого разрешения показывают, что ВАХ перелома имеют не гладкий, а ступенчатый характер; случайные сдвиги этих ступеней и случайные переходы тока со ступени на ступень порождают так называемый шум микроплазмы. Этот шум имеет спектр, близкий белому шуму в полосе частот 0—200 кГц. При переходе из области перелома ВАХ в область токов стабилизации уровень этих шумов резко снижается.

Частота переключения стабилитрона общего назначения обычно не превышает 100 кГц. Пробой не происходит мгновенно, а время срабатывания зависит как от преобладающего механизма пробоя, так и от конструкции стабилитрона. Во время этого процесса напряжение на стабилитроне может превышать его номинальное значение стабилизации. Частотный диапазон переключательных схем на стабилитронах можно расширить, включив последовательно со стабилитроном быстрый импульсный диод. При уменьшении напряжения на цепочке стабилитрон-диод диод закрывается первым, препятствуя разрядке ёмкости стабилитрона. Заряд на этой ёмкости достаточно долго поддерживает на стабилитроне напряжение стабилизации, то есть стабилитрон никогда не закрывается.

Простейшим видом источников опорного напряжения является стабилитрон. В сущности это диод, работающий при обратном смещении на участке, соответствующем напряжению пробоя, где ток пробоя очень быстро возрастает при дальнейшем росте напряжения. Чтобы использовать этот диод в качестве источника опорного напряжения, надо обеспечить прохождение через него приблизительно постоянного тока. Обычно это делается с помощью резистора, подключенного к достаточно высокому напряжению, и таким образом строится наиболее примитивный стабилизированный источник.

Стабилитроны выпускаются  на целый ряд значений напряжения - от 2 до 200 В (их напряжения имеют тот  же набор значений, что и сопротивления  стандартных 5%-ных резисторов), с допустимой мощностью рассеяния от долей ватта до 50 Вт и допуском на напряжение стабилизации от 1 до 20%. Привлекательные на первый взгляд в качестве опорных источников напряжения для различных целей стабилитроны, однако, не так просты в использовании по многим причинам: они имеют конечный набор значений напряжения, у них большой допуск на напряжение стабилизации (кроме дорогих прецизионных стабилитронов), они сильно шумят и их напряжение зависит от тока и температуры. Вот пример двух последних эффектов: стабилитрон на 27 В из распространенной серии 1N5221 стабилитронов на 500 мВт имеет температурный коэффициент порядка + 0,1 %/°С, и в силу этого его напряжение меняется на 1%, когда ток изменяется от 10 до 50% от максимального.

Есть исключение из правила  о плохих характеристиках стабилитронов. Оказывается, что в окрестности  значения напряжения стабилизации 6 В  стабилитроны мало чувствительны к изменениям тока и при этом имеют почти нулевой температурный коэффициент. Этот эффект виден на кривых рис. 1, полученных путем измерения стабилитронов с разными напряжениями. Это характерное поведение связано с тем, что в стабилитронах в действительности используются два разных механизма пробоя: зенеровский и лавинный; первый - при низком напряжении, второй - при высоком. Если стабилитрон используется только как стабильный источник напряжения и вам все равно, каково будет это напряжение, то лучше всего взять один из компенсированных опорных стабилитронов, состоящих из стабилитрона приблизительно на 5,6 В и последовательно с ним соединенного диода, смещенного в прямом направлении. Напряжение стабилитрона выбирается так, чтобы взаимно компенсировать положительный температурный коэффициент стабилитрона и отрицательный температурный коэффициент диода, соответствующий около - 2.1 мВ /°С.

Рисунок 1 - Зависимость  дифференциального сопротивления  стабилитронов (а) и вариаций напряжения стаблизации стабилитронов (б) от номинального напряжения стабилизации (с разрешения Motorola, Inc.).

 

Как видно из рис. 2, температурные коэффициент зависит от рабочего тока, а также от напряжения стабилитрона. Поэтому, выбирая ток стабилитрона, можно как-то «подстроить» температурный коэффициент. Из таких стабилитронов со встроенными последовательно диодами получаются неплохие источники опорного напряжения. Для примера: серия дешевых стабилитронов на 6,2В 1N821 имеет температурные коэффициенты от 10-4/°С (1N821) до 5 · 10-6/°С (1N829), а стабилитроны 1N940 и 1N946 на 9 В и 11,7В имеют температурный коэффициент 2 · 10-6/°С.

Рисунок 2 - Зависимость температурного коэффициента напряжения стабилизации стабититронов от их номинального напряжения (с разрешения Motorola, lnc.).

 

Задание рабочего тока стабилитрона. Описанные выше компенсированные стабилитроны могут использоваться в схемах в качестве источников стабильного напряжения, но надо обеспечить питание их постоянным током. Для серии 1N821 изготовителем указано 6,2 В + 5% при токе 1.5 мА с дифференциальным сопротивлением 15 Ом; таким образом, изменение тока на 1 мА изменяет напряжение в три раза сильнее, чем изменение температуры от -55 до +100°С (для прибора 1N829). На рис. 3 показано, как довольно просто можно обеспечить постоянный ток смещения прецизионного стабилитрона. Операционный усилитель включен как неинвертирующий усилитель и имеет на выходе стабильное напряжение, равное + 10,0 В, которое используется для получения прецизионного тока 7.5 мА. Это самозапускающаяся схема, но она может включиться с любой полярностью на выходе! При «неправильной» полярности стабилитрон работает как обычный диод с прямым смещением. Включение операционного усилителя от однополярного источника питания снимает эту странную особенность. Прежде чем ставить в схему тот или иной ОУ, убедитесь, что его диапазон синфазных входных сигналов включает в себя потенциал минусовой шины источника питания (ОУ с «однополярным питанием»).

 

Рисунок 3- Обеспечение постоянного тока смещения прецизионного стабилитрона

Существуют компенсированные специальные стабилитроны с гарантированной временной стабильностью напряжения; этот параметр, как правило, не указывается. Примеры - серия 1N3501 и 1N4890. Стабилитроны такого типа имеют гарантированную стабильность 5 · 10-6/1000 ч или еще лучше.

 

 

2. Рассчитать коэффициенты усиления каскада по напряжению и нижнюю границу полосы пропускания.

Информация о работе Контрольная работа по «Схемотехника устройств радиосвязи, радиовещания и телевидения»