Автор работы: Пользователь скрыл имя, 23 Февраля 2013 в 17:59, реферат
На самом деле у альтернативной энергетики много проблем. Например, проблема географического распределения энергетических ресурсов. Ветряные электростанции строятся только в районах, где часто дуют сильные ветра, солнечные — где минимальное количество пасмурных дней, гидроэлектростанции — на крупных реках. Нефть, конечно, тоже есть не везде, но ее доставить проще.
ВВЕДЕНИЕ 3
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ СОЛНЦА 5
Физические основы процессов преобразования солнечной энергии. 5
Солнечные тепловые электростанции (СТЭС). 7
Солнечные фотоэлектрические станции (СФЭС). 10
Достоинства солнечной электроэнергетики. 12
Перспективы развития. 12
Фототермические и фотоэлектрические преобразователи света. 14
ГИДРОЭНЕРГЕТИКА 15
Что такое гидроэнергетика. 15
Плотина. 17
Принцип работы гидроэлектростанции. 19
ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА 23
Знакомимся с геотермальной энергетикой. 23
Достоинства и недостатки. 23
Перспективы развития. 28
ИСПОЛЬЗУЕМ ЭНЕРГИЮ БИОМАССЫ 30
Одновременное получение холода, тепла и электроэнергии из биогаза. 32
Достоинства и недостатки технологии. 32
Особенности установки и использования. 34
Области применения когенерационных систем. 35
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ ВЕТРА 38
Ветроэнергетика. 38
Ветроэлектростанция в домашнем хозяйстве. 40
Сравнение генераторов для домашней электростанции. 42
Выбор места установки ветродвигателя. 46
ВОДОРОДНАЯ ЭНЕРГЕТИКА 47
Современные и перспективные методы производства водорода. 50
Использование водорода. 52
ЗАКЛЮЧЕНИЕ 53
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 55
Плавучие ветровые электростанции
Компания «Сименс» и норвежская энергетическая компания Hydro заключили договор о сотрудничестве с целью разработки плавучих ветровых электростанций. Первая плавучая ветровая турбина вскоре будет испытываться недалеко от побережья Норвегии. Плавучие электростанции обладают целым рядом преимуществ. Например, их можно установить в глубоководных прибрежных регионах, чтобы использовать более стабильные ветры, дующие в этих местах. Кроме того, их можно строить практически в любой точке в открытом море.
В домашнем хозяйстве ветряк должен рассматриваться в плане существенной экономии затрат на производство тепла, на досвечивание растений в теплицах и, в какой-то мере, снижения потребляемой электроэнергии от электросети. Но задача автомного или почти автономного снабжения жилища от энергии ветра очень сложна. Ветряк должен быть диаметром порядка 20 м.
Кроме перечисленных причин, сложность использования ветра заключена в его непостоянстве. Построить генераторную и стабилизирующую установку для ВЭУ составляет самостоятельную и очень сложную задачу.
Примечание.
Главный тормоз внедрения ветроэнергетических установок — высокая стоимость киловатта установленной мощности. К тому же не следует забывать повышенные эксплуатационные расходы ветряков.
Важнейшей характеристикой ветряка является т. н. КИЭВ — коэффициент использования энергии ветра. У самых лучших образцов ветряков он составляет до 60—80%! (в среднем 40—45%). У любительских (самопалов) – порядка 35%. Т. о. при скорости ветра 5 м/с получим действительную мощность 0,35x90=31,5 Вт.
Ветроэлектростанция своими руками.
Вариант 1. Генератор переменного тока от автомобиля.
Достоинства: дешевый, легко найти, уже собран.
Недостатки: требуется высокая скорость вращения, требуется зубчатая передача или шкив, небольшой выход энергии, токосъемник требует постоянного техобслуживания.
Пригодность для ветроэлектростанции: низкая.
Главная проблема при использовании автомобильных генераторов для ветряков — то, что они разработаны для слишком высоких скоростей — для получения ветряной энергии приходится выполнить множество значительных модификаций. Даже маленькая и работающая на сравнительно быстрых оборотах ветряная мельница требует скорости 600 об/мин, что даже близко нельзя назвать достаточным для автомобильного генератора. Это значит, что придется использовать зубчатые передачи или шкивы, чтобы большая часть энергии тратилась на вращение.
Стандартный автомобильный
генератор электромагнитный — то
есть часть вырабатываемой энергии
должна быть послана на якорь через
щетки и токосъемники, чтобы создать
магнитное поле. Генератор, который
использует электричество для
Кроме того, щетки и токосъемники имеют тенденцию изнашиваться, требуя постоянного ухода. Генератор также может быть перемотан для выработки энергии на более низких скоростях. Это возможно путем замены существующих витков статора более частыми витками из более тонкой легированной стали.
Вариант 2. Самодельный
генератор с постоянными
Достоинства: низкая стоимость киловатт-часа, высокая эффективность, возможно получение большой мощности, удивительно крепкая конструкция.
Недостатки: трудоемкий, сложный проект, требующий обработки на токарном станке.
Пригодность для ветроэлектростанции: хорошая.
Многочисленные эксперименты показали, что самодельный генератор с постоянными магнитами является наиболее мощным и экономным решением для ветрогенератора. Он способен отлично работать на низких скоростях вращения, на высоких же скоростях он но выдает амперы благодаря своей эффективности. Наиболее модельные генераторы производятся из тормозных дисков от Volvo, так как они очень прочные и имеют встроенные упорные подшипники. Так как такой генератор производит переменный ток, требуется выпрямитель для преобразования его в постоянный и последующей зарядки батареи.
Наилучшие результаты показывает трехфазный генератор, однако его сложнее построить, чем однофазный, так что при построении генератора необходимо решить, сможете ли вы построить трехфазный ограничитесь однофазным.
Генератор для ветряка 2 м в диаметре выдает больше 60 А в 12-вольтную батарею, а это более 700 Вт. На пике мощности он может выдавать даже 100 А. Пока что это решение наиболее эффективно.
Вариант 3. Конверсионный асинхронный генератор переменного тока. Достоинства: дешевый, легко найти, сравнительно легко переоборудовать , хорошая работа на низких оборотах.
Недостатки: результирующая мощность ограничена внутренним сопротивлением, неэффективен на высоких скоростях, требует обработки на токарном станке.
Пригодность для ветроэлектростанции: средняя.
Обычный асинхронный электродвигатель, вырабатывающий переменный ток, может достаточно просто быть перестроен в генератор иными магнитами. Эксперименты показывают, что получившийся генератор хорошо работает на очень низких скоростях, но быстро становится неэффективным на высоких скоростях.
Асинхронный двигатель не имеет никаких проводов в сердечнике, только переменные пластины из алюминия и стали (снаружи они выглядят гладкими). Если вы выдолбите желоба в центре сердечника и вставите туда постоянные магниты, электродвигатель станет генератором с постоянными магнитами.
На практике такой генератор выдает около 10—20 А. Он очень быстро становится малоэффективным: при возрастании скорости ветра количество результирующих ампер возрастает незначительно, остальная же мощность тратится на нагрев самого генератора. Асинхронный электродвигатель обмотан слишком тонкой проволокой и не может поддерживать ток большой мощности. Для того же ветряка диаметром 2 м пиковая сила тока равна всего 25 А.
Если вас устраивает небольшой ток при высоких скоростях ветра, асинхронный двигатель может оказаться хорошим решением. Рекомендуется выбирать трехфазный двигатель. Такой генератор производит переменный ток, поэтому требуется выпрямитель для преобразования его в постоянный ток и последующей зарядки батареи.
Вариант 4. Генератор постоянного тока
Достоинства: простой и уже собранный, некоторые хорошо работают на низких оборотах.
Недостатки: прихотливый, большинство плохо работают на низких оборотах, очень сложно найти генератор достаточно большого размера, маленькие генераторы не могут выдавать большую мощность.
Пригодность для ветроэлектростанции: слабая.
Выбор генератора постоянного тока на первый взгляд кажется логичным, так как батарея заряжается именно постоянным током, и такой системе не потребуется преобразователь. На практике же генераторы постоянного тока даже близко не могут сравниться с генераторами переменного тока. Их щетки требуют постоянного наблюдения, а передающий механизм часто выходит из строя. Такие генераторы могут быть использованы как дополнение к генераторам постоянного тока и выдавать порядка 12 В, что эквивалентно 100—200 Вт. Это немного, но при желании может хватить для небольшого ветряка высотой 1—2 м.
Наилучшим местом установки ветроэлектростанции является участок с наименьшей затеняемостью от ветра большими деревьями и постройками с минимальным расстоянием от их 25—30 м. Высота ее должна превышать высоту ближайших строений на 3—5 м. По линии господствующего направления ветра деревьев быть не должно.
Многие специалисты
К.п.д. тепловых электростанций относительно низок, хотя конструкторы прилагают все силы, чтобы его повысить. В современных электростанциях на органическом топливе он составляет около 40%, а в атомных электростанциях – 33%. При этом большая доля энергии теряется с отходящим теплом (например, вместе со сбрасываемой из систем охлаждения теплой водой), что приводит к так называемому тепловому загрязнению окружающей среды. Отсюда следует, что тепловые электростанции нужно строить в тех местах, где имеется а достаточном количестве охлаждающая вода, или же в открытых ветрам местностях, где воздушное охлаждение не будет оказывать отрицательного влияния на микроклимат. К этому добавляются вопросы безопасности и гигиены. Вот почему будущие крупные АЭС должны располагаться как можно дальше от густонаселенных районов. Но тем самым источники электроэнергии удаляются от ее потребителей, что значительно усложняет проблему электропередачи.
Передача электроэнергии по проводам обходится очень дорого: она составляет около трети себестоимости энергии для потребителя. Чтобы снизить расходы, строят линии электропередачи все более высокого напряжения – оно скоро достигнет 1500 кВ. Но воздушные высоковольтные линии требуют отчуждения большой земельной площади, к тому же они уязвимы для очень сильных ветров и иных метеорологических факторов. А подземные кабельные линии обходятся в 10 – 20 раз дороже, и их прокладывают лишь в исключительных случаях (например, когда это вызвано соображениями архитектуры или надежности).
Серьезнейшую проблему составляет накопление и хранение электроэнергии, поскольку электростанции наиболее экономично работают при постоянной мощности и полной нагрузке. Между тем спрос на электроэнергию меняется в течение суток, недели и года, так что мощность электростанций приходится к нему приспосабливать. Единственную возможность сохранять впрок большие количества электроэнергии в настоящее время дают гидроаккумулирующие электростанции, но и они в свою очередь связаны с множеством проблем.
Все эти проблемы, стоящие перед современной энергетикой, могло бы – по мнению многих специалистов – разрешить использование водорода в качестве топлива и создание так называемого водородного энергетического хозяйства.
Водород, самый простой
и легкий из всех химических элементов,
можно считать идеальным
Водород можно транспортировать и распределять по трубопроводам, как природный газ. Трубопроводный транспорт топлива – самый дешевый способ дальней передачи энергии. К тому же трубопроводы прокладываются под землей, что не нарушает ландшафта. Газопроводы занимают меньше земельной площади, чем воздушные электрические линии. Передача энергии в форме газообразного водорода по трубопроводу диаметром 750 мм на расстояние свыше 80 км обойдется дешевле, чем передача тоги же количества энергии в форме переменного тока по подземному кабелю. На расстояниях больше 450 км трубопроводный транспорт водорода дешевле, чем использование воздушной линии электропередачи постоянного тока с напряжением 40кВ, а па расстоянии свыше 900 км – дешевле воздушной линии электропередачи переменного тока с напряжением 500 кВ.
Водород – синтетическое топливо. Его можно получать из угля, нефти, природного газа либо путем разложения воды. Согласно оценкам, сегодня в мире производят и потребляют около 20 млн. т водорода в год. Половина этого количества расходуется на производство аммиака и удобрений, а остальное – на удаление серы из газообразного топлива, в металлургии, для гидрогенизации угля и других топлив. В современной экономике водород остается скорее химическим, нежели энергетическим сырьем.
Сейчас водород производят главным образом (около 80%) из нефти. Но это неэкономичный для энергетики процесс, потому что энергия, получаемая из такого водорода, обходится в 3,5 раза дороже, чем энергия от сжигания бензина. К тому же себестоимость такого водорода постоянно возрастает по мере повышения цен на нефть.
Небольшое количество водорода получают путем электролиза. Производство водорода методом электролиза воды обходится дороже, чем выработка его из нефти, но оно будет расширяться и с развитием атомной энергетики станет дешевле. Вблизи атомных электростанций можно разместить станции электролиза воды, где вся энергия, выработанная электростанцией, пойдет на разложение воды с образованием водорода. Правда, цена электролитического водорода останется выше цены электрического тока, зато расходы на транспортировку и распределение водорода настолько малы, что окончательная цена для потребителя будет вполне приемлема по сравнению с ценой электроэнергии.
Сегодня исследователи интенсивно работают над удешевлением технологических процессов крупнотоннажного производства водорода за счет более эффективного разложения воды, используя высокотемпературный электролиз водяного пара, применяя катализаторы, полунепроницаемые мембраны и т. п.