Автоматическая компенсация температуры свободных концов термопары

Автор работы: Пользователь скрыл имя, 10 Декабря 2013 в 19:28, курсовая работа

Описание работы

Термоэлектрический эффект Зеебека. Термоэлектрический эффект известен уже давно. В 1820 году появилось сообщение Г.Эрстеда о том, что магнитная стрелка отклоняется вблизи провода с электрическим током. В 1821 году Т.Зеебек отметил, что стрелка отклоняется также, когда два стыка замкнутой электрической цепи, составленной из двух разных проводящих материалов, поддерживаются при разной температуре. Зеебек сначала полагал, что это чисто магнитный эффект. Но впоследствии стало ясно, что появление электрического тока в цепи связано с разностью температур. Важной характеристикой термоэлектрических свойств материалов, составляющих цепь, является напряжение на концах разомкнутой цепи. Это напряжение разомкнутой цепи называется термоэлектрической электродвижущей силой (термо-ЭДС).

Содержание работы

ЗАДАНИЕ 3
ВВЕДЕНИЕ 4
1. Основные схемы термокомпенсации 8
1.1. Термокомпенсация с помощью ИДТ 8
1.2 Мостовая схема термокомпенсации 13
2. Расчетная часть 15
2.1 Расчет параметров схемы термокомпенсации с помощью ИДТ 15
2.2. Расчет мостовой схемы термокомпенсации 17
ЗАКЛЮЧЕНИЕ 19
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 20
СТАНДАРТЫ 21

Файлы: 1 файл

тех.прибор...docx

— 944.16 Кб (Скачать файл)

Рисунок 8. Термокомпенсация на основе ИДТ с токовым выходом серии  AD590. В схеме применяется термостабильный источник опорного напряжения AD580.

Аналогичные серии ИДТ с токовым и потенциальным выходом производятся компанией NationalSemicondutor [5]. Имеются отечественные аналоги этих микросхем [6].

  • 1.2 Мостовая схема термокомпенсации

 

В таких схемах в качестве датчика температуры  применяют термосопротивления. Наиболее распространенный способ подключения  термосопротивления как датчика  температуры – включение его  в одно из плеч измерительного моста. На Рисунке 9показана мостовая схема термокомпенсации.

В этой схеме мост уравновешивается при некоторой температуре свободных концов, принятой за нормальную температуру (согласно заданию – это 25 0С, т.е., середина температурного диапазона). При отклонении температуры от нормальной мост разбалансируется. Напряжение UABв диагонали AB, отличное от нуля из-за разбалансировки, подается на выход и добавляется к напряжению U(Tгор,Tхол), генерируемому термопарой.

 

Рисунок 9. Термосопротивление Rtвключено в плечо неуравновешенного измерительного моста.

 

Напряжение  в измерительной диагонали моста UABопределяется цепочками делителей R1, Rt и R2, R3. Будем заранее считать, что в условиях равновесия все четыре сопротивления моста соответствуют номиналу 100 Ом (один из стандартов для металлических термосопротивлений). Тогда при отклонении от равновесия малые изменения напряжения

 

ΔUAB = ,

 

где α – температурный коэффициент терморезистора (в долях на градус),  
β – температурный коэффициент термопары по холодным концам (в Вольтах на градус), U–напряжение на диагонали подачи питания,  
ΔT– малые изменения температуры холодных концов (градусы).

 

Отсюда вытекает соотношение, задающее напряжение питаниямоста:

 

U = 4β/α.

 

Для термопары типа ТХК в соответствии с НСХ при температурах в диапазоне 15 0С –  35 0С температурный коэффициент β≈40 мкВ/град[8]. Типичный температурный коэффициент термосопротивленияα≈0,005град-1. Следовательно, напряжение питания U≈30 мВ. Отсюда понятно, что мост лучше питать источником тока I≈0,3 мА, а не источником напряжения. При напряжении источника питания E=10 В (Рисунок 9) внутреннее сопротивление источника тока, образованное суммой сопротивлений r1, r2,r3,получаетсяпорядка30 Ком (ниже это значение уточняется).Разбивка суммарного сопротивления на три части r1, r2,r3необходимадля общего позиционирования моста по уровню потенциала и точной подстройки по току.

 

 

 

2. Расчетная  часть

  • 2.1 Расчет параметров схемы термокомпенсации с помощью ИДТ

 

Параметры схемы термокомпенсации полностью  задаются делителем на резисторах R1 и R2, который определяет величинутермокомпенсирующей добавкинапряжения.Резисторы R1 и R2 в схеме на Рисунке 8 должны удовлетворять двум требованиям:

  • при номинальной температуре (25 0С) добавка напряжения точно компенсирует отличие сигнала термопары от того уровня, который был бы при температуре холодного спая, равной 0 0С;
  • на краях температурного диапазона (15 – 35 0С) добавка напряжения должна обеспечивать компенсацию с минимальной погрешностью (очевидно, если сигнал термопары линейно зависит от температуры холодных концов, то  погрешность будет нулевая; ненулевая погрешность возникает из-за нелинейности).

 Рассчитаем  растекание токов. Для этого  запишем уравнения Кирхгофа (с учетом направления токов I1 и I2, показанных на Рисунке 8):

 

-I1·R1 + I2·R2 = Vout

 

I1 + I2 = I

 

Решение этой системы линейных уравнений  имеет вид:

 

I1=(Vout +I∙R2)/(R1+R2);

 

I2= (Vout+I∙R1)/(R1+R2).

 

Падение напряжения на резисторе R1 (компенсирующая добавка)

 

ΔU = I1·R1=(Vout +I∙R2).

 

Сопротивление R2 находится из условия равенства компенсирующей добавки нулю при температуре 0 0С:

 

R2 = Vout / (ΔI·273),

 

где ΔI–шаг изменения тока на 10 К (в данном случае – 1мкА на 10 К). При Vout = 2,5ВполучаемR2 = 9,16 КОм, что в точности соответствует среднему значению R2на Рисунке 8. Таким образом,это сопротивление от типа термопары не зависит.

СопротивлениеR1находится из другого условия: в соответствии с НСХ термопары, притемпературе середины диапазона(25 0С) добавка напряжения должна точно компенсировать отличие сигнала термопары от того уровня, который был бы при температуре холодного спая, равной 0 0С. Для термопары типа L(хромель /копель) эта добавка ΔU составляет  
1,619 мВ[8].  Из этого получаем

 

R1= ΔU/(ΔI·25)= 1,619·10-3/(10-6·25) =64,76 (Ом).

 

Это отличается от значения, приведенного на Рисунке 8, но там речь идет о термопаре  другого типа (типа К).

Найдем, каково будет изменение компенсирующего напряжения на краях температурного диапазона (15 – 35 0С) по отношению к температуре середины диапазона (на ±10 0С от центра диапазона): 

ΔU≈(ΔI·10)·R1 = 0,6476(мВ).

 

По таблице, приведенной в [8], на нижнем пределе (15 0С) это изменение должно быть равно  -0,656мВ,а на верхнем пределе (35 0С), соответственно, +0,667мВ. Максимальное различие (на верхнем пределе) составляет около  0,02мВ, что при чувствительности термопары около 0,04мВ/град соответствует ошибке в 0,5 0Сивполне укладывается в требования задания.

  • 2.2. Расчет мостовой схемы термокомпенсации

 

В мостовой схеме (Рисунок  9) все  сопротивления мостаR взяты одинковымии равными100 Ом, что совпадает с номиналом медного термосопротивления при температуре 0 0С. Это обеспечивает уравновешенность моста при температуре 0 0С. Выбор суммарной величины сопротивлений r = r1+r2+r3опреляется требованием, чтобы, в соответствии с НСХ термопары, приращение напряжения в диагонали моста ABпри температуре середины диапазона  (25 0С) точно компенсировало отличие сигнала термопары от того уровня, который был бы при температуре холодного спая, равной 0 0С. Для термопары типа L(хромель /копель) эта добавка ΔUABдолжна составлять 1,619 мВ[8].  С точностью до первого порядка малости изменения величины термосопротивления ΔR/Rи отношения сопротивлений R/r

 

ΔUAB≈  ¼E (R/r)( ΔR/R) = ¼E(ΔR/r)

 

Отсюда получаем

 

r =

 

Для медного  термосопротивления с номиналом 100 Ом увеличение сопротивления при изменении температуры от 00Сдо25 0С составляет [9]

 

ΔR = 10,70 Ом,

так что при E= 10 Всуммарная величина сопротивлений   
 
r = r1+r2+r3= 16,52 КОм

 

При этом измерительный ток, потребляемый мостом, не превосходит рекомендуемого в  [9] ограничения в 1мА, связанного с ограничением термосопротвления по саморазогреву.

Измеренине наприжения на измерительной диагали моста(рис.9)

Здесь  E=10В;  r=16.52 мОм

Для  Т=250С  уже расчитано, 1,619 мВ

По тоблице для термосопротивления(медь)[9] изменение сопротивления для

Т=150С       

Т=250С       

Т=350С       

Соответственно;

При Т=150С       

При Т=250С     

При Т=350С     

Разносты:

По таблице для термопары эти разности должны быть, соотвественно , для

Т=150С         

Т=350С         

Отклонение (на верхном пределе) не превышает 0,02мВ=20мкВ.

ЗАКЛЮЧЕНИЕ

Полученные  в расчётах результаты вполне соответствуют условиям, поставленным в задании к курсовому проекту. Расчет сделан для компенсации температуры холодного спая термопары. В ходе курсового проекта много нового узнали про термопары. Мы компенсировали  температуру холодного спая термопары с помощью ИДТ и мостовой схемы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК  ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.Фарзане Н.Г., Илясов Л.В. Технологические  измерения и приборы М.: Высшая школа, 1989. — 456 с.

http://zi.zavantag.com/download/docs-276735/119-276735.doc

2.Е.К. Шевцов, Методические  указания к курсовому проекту  по дисциплине:

«Технологические измерения  и приборы», Мариуполь, ПГТУ, 1997 – 41 с.

3. Walt Kester, James Briant, Walt Jung.Перевод и обработка Андрея Асташкевичаи Александра Фрунзе. Датчикитемпературы.Перевод 7 главыучебника “Practical Design Techniques For Sensor Signal Conditioning”, фирма «Analog Devices». В журнале«Основы схемотехники», 2000 г., №3. http://www.platan.ru/shem/pdf/dat_temp2.pdf.

4. User’s Guide. AD590 Temperature sensors.2-Terminal IC Temperature Transducer AD590.http://www.omega.com/manuals/manualpdf/M0287.pdf

5. Евгений Иванов.  Интегральные  датчики температуры NationalSemiconductor. http://www.rlocman.ru/i/File/2007/08/08/16-19.pdf

6. Температурные датчики с линейной  зависимостью выходного напряжения от температуры К1019ЕМ1 .http://electronlab.ru/pi/products_id/135779.

7. Analog Devices. A Two-Terminal IC Temperature Transducer AD590.

http://www.jameco.com/Jameco/Products/ProdDS/241939AD.pdf .

 

8.ГОСТ Р.  8.585―2001. Государственный стандарт Российской Федерации.ТЕРМОПАРЫ Номинальные статические характеристики преобразования.

http://www.complexdoc.ru/ntdpdf/550093/gsi_termopary_nominalnye_staticheskie_kharakteristiki_preobrazovaniya.pdf

 

9. ГОСТ 6651-2009. Межгосударственный стандарт. Термопреобразователи сопротивления  из платины, меди и никеля.http://www.skbpa.ru/publish/gost_6651_2009.pdf

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СТАНДАРТЫ

 

1. ГОСТ 25276-82 Полимеры. Метод  определения вязкости ротационным  вискозиметром при определенной  скорости сдвига

2. ГОСТ 2.105-95МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ   
Единая система конструкторской документации  
ОБЩИЕ ТРЕБОВАНИЯ К ТЕКСТОВЫМ ДОКУМЕНТАМ

3. Ип 02.00-06/08 Положение Работы выпускные квалификационные, проекты и работы курсовые. Правила оформления. КемТИПП, Кемерово 2008.

 

4. ГОСТ Р. 8.585―2001. Государственная  система обеспечения единства

Измерений. ТЕРМОПАРЫ. Номинальные  статические характеристики

Преобразования. База нормативной документации: www.complexdoc.ru

 

 

 

 


Информация о работе Автоматическая компенсация температуры свободных концов термопары