Методы определения уровня жидкости с помощью измерения давления

Автор работы: Пользователь скрыл имя, 26 Февраля 2015 в 22:16, курсовая работа

Описание работы

Цель курсового проекта: исследовать современные методы определения уровня жидкости с помощью измерения давления.

При выполнении курсового проекта были поставлены следующие задачи:
1) Теоретическое исследование материала по измерению уровня и давления жидкости;
2) Определить связь между давлением и уровнем жидкости.

Содержание работы

Введение
5
1
Теоретические сведения о давлении и жидкости
6
1.1
Давление и жидкость. Основные понятия
6
1.2
Единицы измерения давления
8
1.3
Физические свойства жидкости
8
2
Гидростатическое давление
11
2.1
Понятие о гидростатическом давлении
11
2.2
Гидростатический парадокс
11
2.3
Основное уравнение гидростатики
12
2.4
Вакуум
13
3
Приборы для измерения давления
15
3.1
Классификация приборов для измерения давления
14
3.2
Описание и принцип работы приборов
16
3.2.1
Жидкостные манометры
16
3.2.2
Вакуумметр
19
3.2.3
Барометр
20
3.2.4
Деформационные манометры и дифманометры
21
4
Определение уровня жидкости посредством измерения давления
30
5
Расчет давления и уровня жидкости
35

Заключение
38

Список использованной литературы
39

Файлы: 1 файл

5 КУРСОВАЯ.docx

— 1.04 Мб (Скачать файл)

Под действием давления часть рабочей жидкости из широкого сосуда перетекает в измерительную трубку. Поскольку объем жидкости, вытесненный из широкого сосуда, равен объему жидкости, поступившему в измерительную трубку,

Измерение в однотрубных манометрах высоты только одного столба рабочей жидкости приводит к снижению погрешности считывания, которая с учетом погрешности градуировки шкалы не превышает ± 1 мм при цене деления 1 мм. Другие составляющие погрешности, обусловленные отклонениями от расчетного значения ускорения свободного падения, плотности рабочей жидкости и среды над нею, температурными расширениями элементов прибора, являются общими для всех жидкостных манометров.

У двухтрубных и однотрубных манометров основной погрешностью является погрешность считывания разности уровней. При одной и той же абсолютной погрешности приведенная погрешность измерения давления снижается при увеличении верхнего предела измерения манометров. Минимальный диапазон измерения однотрубных манометров с водяным заполнением составляет 1,6 кПа (160 мм вод. ст.), при этом приведенная погрешность измерения не превышает ±1 %. Конструктивное выполнение манометров зависит от статического давления, на которое они рассчитаны.

 

3.2.2 Вакуумметры 

 

Вакуумметры служат для измерения давления газов ниже атмосферного. Области применения в химии и химические технологии: жидкостные - обычно в лабораторной практике и для поверки вакуумметров других типов; деформационные - в системах управления вакуумированием непосредственно в производственных условиях.

Виды вакуумметров:

1) Жидкостные (гидростатические) вакуумметры. В одном из колен U-образной трубки на рисунке 7 газ находится под измеряемым давлением ри, в другом - под известным (так называемым опорным) роп. Разность давлений уравновешивается столбом жидкости высотой h и плотностью ρ:

 

                                                  (3.1)

где g-ускорение свободного падения. Обычно ри >>роп.

Рисунок 7 - Жидкостный вакуумметр с открытым коленом.

Применяемые жидкости (ртуть или вакуумные масла) имеют при рабочей температуре малое парциальное давление пара и химически нейтральны по отношению к газам и материалу трубки. Жидкостные вакуумметры могут быть с открытым или закрытым коленом. В последнем случае роп ≈0 и, следовательно, измеряется абсолютным давление газа. Достоинства жидкостных вакуумметров: простота конструкции, наглядность измерений. Недостатки: проникновение паров жидкости в вакуумную систему, небольшой диапазон определяемых давлений, большие габариты, недостаточная прочность конструкции, трудность автоматизации измерений и записи отсчетов. Погрешность до 10 Па. 

2) Деформационные вакуумметры. Измеряемое давление воздействует на упругий элемент (мембрану, сильфон, спиральную трубку), деформация которого пропорциональна давлению и определяется оптическим или электрическим методом, либо непосредственно превращается с помощью механической передачи в показания стрелки прибора. Упругий элемент может также принудительно возвращаться в исходное положение посредством электрических или пневматических источников силы. В этом случае критерием давления служит компенсирующая сила или какая-либо другая величина, связанная с этой силой (напряжение, ток, пневматическое давление). Достоинства деформационных вакуумметров: простота и надежность конструкции, недостаток: небольшой диапазон измерений. Погрешность до 0,4%.

3.2.3 Барометры

Барометры применяются для измерения атмосферного давления. Наиболее распространенными являются чашечные барометры с ртутным заполнением, отградуированные в мм рт. ст. (рисунок 8).

 

 

Рисунок 8 - схема чашечного ртутного барометра: 1 - нониус; 2 - термометр

 

Погрешность считывания высоты столба не превышает 0,1 мм, что достигается использованием нониуса 1, совмещаемого с верхней частью мениска ртути. При более точном измерении атмосферного давления необходимо вводить поправки на отклонение ускорения свободного падения от нормального и значение температуры барометра, измеряемой термометром 2. При диаметре трубки менее 8... 10 мм учитывается капиллярная депрессия, обусловленная поверхностным натяжением ртути.

 

3.2.4 Деформационные манометры или дифманометры.

 

В деформационных манометрах используется зависимость деформации чувствительного элемента или развиваемой им силы от измеряемого давления. Пропорциональная давлению деформация или сила преобразуются в показания или соответствующие изменения выходного сигнала. Большинство деформационных манометров и дифманометров содержат упругие чувствительные элементы, осуществляющие преобразование давления в пропорциональное перемещение рабочей точки.

 

 

Рисунок 9 - Упругие чувствительные элементы деформационных манометров: а - трубчатые пружины; б - сильфоны; в - плоские и гофрированные мембраны;

 

Наиболее распространенные упругие чувствительные элементы представлены на рисунке 9. К их числу относятся трубчатые пружины, сильфоны, плоские и гофрированные мембраны, мембранные коробки, вялые мембраны с жестким центром.

Статической (упругой) характеристике чувствительного элемента, связывающей перемещение рабочей точки с давлением, присуще наличие начальной зоны пропорциональных перемещений, в которой имеют место упругие деформации, и нелинейной области, в которой возникают пластические деформации. Несовершенство упругих свойств материалов чувствительных элементов обусловливает наличие гистерезиса статической характеристики и упругое последействие. Последнее проявляется в запаздывании перемещения рабочей точки по отношению к приложенному давлению и медленном возвращении ее в начальное положение после снятия давления.

Форма и крутизна статической характеристики зависят от конструкции чувствительного элемента, материала, температуры. Рабочий диапазон выбирается в области упругих деформаций с обеспечением запаса на случай перегрузки чувствительного элемента давлением.

Виды дифманометров:

1) Дифманометры колокольные могут быть использованы для измерения расхода газа по перепаду давления в сужающем устройстве. Эти дифманометры можно применять также для измерения малых избыточных и вакуумметрических давлений газа, а также перепадов давления.

Наибольшее распространение из числа колокольных дифманометров получили приборы,- использующие один колокол, плавающий в жидкости и перемещающийся под воздействием давления или разности давлений газа. Таким образом, перемещение колокола может служить мерой измеряемого давления или перепада давления газа. Бывают колокольные дифманометры с двумя колоколами и двухжидкостные, но они распространения не получили.

В приборах с колоколом, свободно плавающим в жидкости, измеряемый перепад давления уравновешивается силой, возникающей вследствие увеличения силы тяжести при его подъеме. Этот способ уравновешивания обычно называют гидростатическим.

Уравновешивание измеряемого давления или перепада давления, воспринимаемого колоколом, может осуществляться с помощью специального груза или упругими силами винтовой пружины. Такой способ уравновешивания обычно называют механическим. Способ уравновешивания с помощью груза широкого распространения не получил и в приборах, выпускаемых в настоящее время, не реализуется.

У дифманометров колокольных с гидростатическим уравновешиванием, колокол должен быть толстостенным и с достаточно большой рабочей площадью. В качестве разделительной жидкости в этих приборах применяют ртуть. Колокольные дифманометры этого типа в настоящее время не изготовляют и не применяют. У дифманометров колокольных с уравновешиванием упругими силами винтовой пружины колокола изготовляют тонкостенными, а в качестве разделительной жидкости применяют трансформаторное масло. Форма колоколов у дифманометров колокольной системы может быть разнообразной, но в большинстве случаев колокола выполняются цилиндрической формы, ход которых пропорционален измеряемому давлению или перепаду давления. Имеются также дифманометры с колоколами, внутренние стенки которых имеют профилированную форму, ход этих колоколов пропорционален квадратному корню из значения измеряемого перепада давления. Дифманометры этого типа вследствие сложности изготовления профилированного колокола и необходимости применения в качестве разделительной жидкости ртути распространения не получили.

 

 

Рисунок 10 - Схема колокольного дифманометра

 

Рассмотрим колокольный дифманометр, схематически показанный на рисунке  10. У этого прибора колокол, подвешенный на постоянно растянутой винтовой пружине, частично погружен в разделительную жидкость (трансформаторное масло), налитую в сосуд.

Колокол прибора будет находиться в равновесии, а уровень разделительной жидкости на отметке 0-0 до тех пор, пока под колоколом и в сосуде над ним давления одинаковы (р1 = р2). В этом случае равнодействующая сил, равная разности между силой тяжести колокола и гидростатическим давлением, уравновешивается силой упругости винтовой пружины.

При возникновении разности давлений р1 - р2 (р1 > p2) равновесие сил, приложенных к колоколу, нарушается. При этом появляется подъемная сила от перепада давления, направленная вверх, которая будет перемещать колокол в том же направлении. Это в свою очередь вызовет возникновение противодействующей силы, обусловленной изменением упругих сил винтовой пружины вследствие ее деформации. Когда подъемная сила сделается равной по своему значению противодействующей силе, то колокол, переместившись на высоту Н, займет новое положение равновесия.

Таким образом, изменяя жесткость пружины и внутреннюю площадь колокола, можно изменять чувствительность прибора, а следовательно, и верхний предел измерения.

Следует отметить, что изменение показаний дифманометра с тонкостенным колоколом при отклонении температуры окружающего воздуха от нормальной температуры до любой температуры от 5 до 50°С очень мало и им можно пренебречь. Это является большим преимуществом приборов данного типа.

Изменение верхних пределов измерений у дифманометров колокольных достигается сменой пружин и колокола, причем для "перекрытия всех рабочих диапазонов от 0 до 100 кгс/м2 (от 0 до 1000 Па) обычно бывает достаточно иметь два размера колоколов.

 

2) Кольцевой дифманометр. Дифманометры кольцевые применяют в промышленности для измерения расхода газа по перепаду давления в сужающем устройстве. Дифманометры этого типа используются также для измерения малого вакуумметрического и избыточного давления газа.

 

 

Рисунок 11 - Схема дифманометра кольцевого

 

Схема дифманометра кольцевого показана на рисунке 11. Дифманометр представляет собой замкнутое полое кольцо, разделенное вверху непроницаемой перегородкой, а в нижней своей части на угол, равный ос, заполненное разделительной жидкостью (водой или трансформаторным маслом). Кольцо может поворачиваться на некоторый угол ф (обычно 40-50° С) около оси, перпендикулярной плоскости окружности. Осью кольца является опорная призма (одна или две), расположенная в центре кольца и опирающаяся на стальную подушку (одну или две), заделанную в кронштейне, который на схеме не показан. К нижней части кольца прикреплен груз С, который создает противодействующий момент и определяет максимальное значение угла поворота кольца при заданном верхнем пределе измерения разности давлений.

Давления р1 и р2 к обеим полостям кольца, образованным перегородкой и разделительной жидкостью, подводятся посредством гибких резиновых трубок. Противодействующий момент, создаваемый резиновыми трубками, мал и не оказывает существенного влияния на угол поворота кольца. Подвижная система дифманометра До заполнения кольца разделительной жидкостью и снятом грузе С балансируется с помощью специальных грузов 'так, чтобы центр тяжести подвижной системы совпадал с осью вращения. На схеме кольцевого дифманометра (рисунок 11) балансирные грузы не показаны.

Кольцо дифманометра будет находиться в равновесии до тех пор, пока в обеих его полостях давление одинаково, т. е. p1 = р2 Если р1 будет больше р2, то под действием разности давлений независимо от движения кольца разделительная жидкость в нем переместится на угол β и, таким образом, действующая на жидкость разность давлений будет уравновешиваться столбом жидкости Н, При этом действующая на перегородку кольцевой трубки разность давлений создает движущую силу. Эта сила, приложенная в центре тяжести перегородки, находящейся на расстоянии R от оси вращения кольца, будет создавать вращающий момент. Противодействующий момент создается силой тяжести груза. Для равновесия кольца необходимо, чтобы существовало равенство моментов.

Дифманометры кольцевые изготовляются с отсчетными устройствами или без них и снабжаются одним или двумя передающими ферродинамическими преобразователями. Эти дифманометры могут быть использованы для работы в комплекте с одним или двумя вторичными ферродинамическими приборами.

 

3) Дифманометры поплавковые изготовляют по типу жидкостных чашечных приборов. Сосуды поплавковых дифманометров располагают обычно U-образно. У дифманометров этого типа измеряемый перепад давления уравновешивается давлением столба рабочей жидкости (ртути или трансформаторного масла), залитой в прибор. Измерение высоты этого столба осуществляется с помощью поплавка, передающего положение уровня рабочей жидкости в одном из сосудов на отсчетное устройство. Передача хода от поплавка к отсчетному устройству может быть осуществлена механическим путем или с помощью электрического преобразователя на вторичный показывающий (самопишущий) прибор. У дифманометров с масляным заполнением поплавок выполняют пустотелым.

Дифманометры с ртутным заполнением предназначены для измерения: расхода жидкости, газа и пара по перепаду давления в сужающем устройстве; перепада давления жидкости и газообразных сред; уровня жидкости, находящейся под атмосферным, вакуумметрическим или избыточным давлением.

 

Информация о работе Методы определения уровня жидкости с помощью измерения давления