Автор работы: Пользователь скрыл имя, 14 Апреля 2015 в 01:19, реферат
Закладка фундамента электротехники, ее научных основ. Становление электротехники как самостоятельной отрасти. Зарождение и развитие электроники (первая четверть XX в.).
Все что нас сейчас окружает, так или иначе
связано с электричеством. Электричество
очень прочно вошло в нашу жизнь, сделало
её проще и лучше. Во многом, так произошло
благодаря науке – электротехнике.
Человечество веками накапливало опыт и знания в области электричества. Многие знаменитые ученые работали в этой области, такие как – Михаил Ломоносов, Алессандро Вольта, Луиджи Гальвани, Ампер Андре Мари и другие. Все они вносили вклад в тогда еще малоизвестную науку, электротехнику.
Выдающимся открытием в области электротехники является закон Ома, который был сформулирован Георгом Омом в 1826 году. Этот закон описывал как электрические величины, такие как ток, напряжение и сопротивление зависят друг от друга.
Не меньший вклад в развитие электротехники внес Ампер, который занимался изучением токов и их взаимодействием. Также он предложил теорию магнетизма. В честь этого ученого названа единица измерения силы тока – Ампер.
Майкл Фарадей занимался изучением электромагнитного поля. Именно он, впервые получил электрический ток с помощью явления электромагнитной индукции и сформулировал теорию о том, что электрическое и магнитное поля существуют, они не разделимы и вместе они образуют электромагнитное поле.
Борис Семенович Якоби внес неоценимый вклад в развитие электрических машин. Он создал первый электродвигатель, а также занимался исследованием в области электромагнитов.
Михаил Осипович Доливо-Добровольский создал трехфазную систему. Он доказал её преимущества, благодаря чему, до сих пор эта система остается востребованной. Также, он создал трехфазный асинхронный двигатель, который стал основным двигателем на производстве в мире. Помимо этого, он создал трехфазный трансформатор.
Современная электротехника продолжает развиваться. В промышленности создаются новые двигатели, с более лучшими характеристиками. В электронике создаются более мощные микропроцессоры, способные выполнять еще большее количество операций. В быту, появляются различные инструменты, источники питания и т.д. В транспорте, быстро развиваются электрические автомобили.
Итак, за последние несколько веков, электротехника из небольшой области знаний, вырасла в огромную науку, которая теперь включает в себя много отраслей. Причем, её развитие не останавливается, а стремительно идёт дальше, к более новым изобретениям, открытиям и высотам!
Бурное развитие науки и техники в последней трети XIX в., названное Ф. Энгельсом «Электротехнической революцией » изменили энергетическую базу производства. На смену «веку» пара пришел «век электричества», началась электрификация производства, транспорта и быта.Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в родное хозяйство и быт, и сегодня нет такой области техники, в том или ином виде не использовалась бы электрическая энергия в будущем ее применение будет еще более расширяться.
Под электротехникой в широком смысле слова подразумевается область науки и техники, использующая электрические и магнитные явления для практических целей.
Это общее определение электротехники можно раскрыть более подробно, выделив те основные области, в которых используют электрические и магнитные явления: преобразование энергии природы (энергетическая); превращение вещества природы (технологическая); получение и передача сигналов или информации (информационная). Поэтому более полно электротехнику можно определить, как область науки и техники, использующую электрические и магнитные явления для осуществления процессов преобразования энергии и превращения вещества, а также для передачи сигналов и информации.
В последние десятилетия из электротехники выделилась промышленная электроника с тремя ее направлениями: информационное, энергетическое и технологическое, которые с каждым годом приобретают все большее значение в ускорении научно-технического прогресса.
В развитии электротехники условно можно выделить следующие шесть этапов.
1. Становление электростатики (до 1800 г.)
К этому периоду относятся первые наблюдения электрических и магнитных явлений, создание первых электростатических машин и приборов, исследования атмосферного электричества, разработка первых теорий электричества, установление закона Кулона, зарождение электромедицины.
2. Закладка фундамента электротехники, ее научных основ {1800 — 1830 гг.)
Начало этого периода ознаменовано созданием «вольтова столба» — первого электрохимического генератора, а вслед за ним «огромной наипаче батареи» В. В. Петрова, с помощью которой им была получена электрическая дуга и сделано много новых открытий. Важнейшими достижениями этого периода является открытие основных свойств электрического тока, законов Ампера, Био - Савара, Ома, создание прообраза электродвигателя, первого индикатора электрического тока (мультипликатора), установление связей между электрическими и магнитными явлениями.
3. Зарождение электротехники (1830—1870 гг.)
Самым знаменательным событием этого периода явилось открытие М. Фарадеем явления электромагнитной индукции, создание первого электромашинного генератора. Разрабатываются разнообразные конструкции электрических машин и приборов, формулируются законы Ленца и Кирхгофа, создаются первые источники электрического освещения, первые электроавтоматические приборы, зарождается электроизмерительная техника. Однако широкое практическое применение электрической энергии было невозможно из-за отсутствия экономичного электрического генератора.
4. Становление электротехники как самостоятельной отрасти техники (1870—1890 гг.)
Создание первого промышленного электромашинного генератора с самовозбуждением (динамомашины) открывает новый этап в развитии электротехники, которая становится самостоятельной отраслью техники. Первую динамо-машину изобрел В. Сименс- Германия 1867 г. В связи с развитием промышленности, ростом городов возникает острая потребность в электрическом освещении, начинается строительство «домовых» электрических станций, вырабатывающих постоянный ток. Электрическая энергия становится товаром, и все более остро ощущается необходимость централизованного производства и экономичной передачи электроэнергии на значительные расстояния. Решить эту проблему на базе постоянного тока было нельзя из-за невозможности трансформации постоянного тока.
Значительным стимулом к, внедрению переменного тока явилось изобретение «электрической свечи» П. Н. Яблочковым и разработка им схемы дробления электрической энергии посредством индукционных катушек, представлявших собой трансформаторе разомкнутой магнитной системой. Однако однофазные двигатели были непригодны для целей промышленного электропривода.
Одновременно разрабатываются способы передачи электрической энергии на большие расстояния посредством значительного повышения напряжения линий электропередач.
Дальнейшее развитие электрического освещения способствовало совершенствованию электрических машин и трансформаторов; в середине 80-х гг. началось серийное производство однофазных трансформаторов с замкнутой магнитной системой (М. Дери, О. Блати, К. Циперновский).
Идея П. Н. Яблочкова о централизованном производстве и распределении электроэнергии претворяется в жизнь, начинается строительство центральных электростанций переменного тока. Однако развивающееся производство требовало комплексного решения сложнейшей научно-технической проблемы: экономичной передачи электроэнергии на дальние расстояния и создания экономичного и надежного электрического двигателя, удовлетворяющего требованиям промышленного электропривода. Эта проблема была успешно решена на основе многофазных, в частности трехфазных систем.
5. Становление и развитие
Важнейшей предпосылкой разработки трехфазных систем явилось открытие (1888 г.) явления вращающегося магнитного поля. Первые многофазные двигатели были двухфазными.
Трехфазная система оказалась наиболее рациональной, так как имела ряд преимуществ как перед однофазными цепями, так и перед другими многофазными системами. В разработку трехфазных систем большой вклад сделали ученые и инженеры разных стран. Но как будет показано далее, наибольшая заслуга принадлежит М. О. Доливо-Добровольскому, сумевшему придать своим работам практический характер, создавшему трехфазные синхронные генераторы и асинхронные двигатели, трансформаторы.
Убедительной иллюстрацией преимуществ трехфазных цепей была знаменитая Лауфен-Франкфуртская электропередача (1891 г.), сооруженная при активном участии Доливо-Добровольского.
С этого времени начинается бурное развитие электрификации: строятся мощные электростанции, возрастает напряжение электропередач, разрабатываются новые конструкции электрических машин, аппаратов и приборов. Электрический двигатель занимает господствующее положение в системе промышленного привода. Процесс электрификации постепенно охватывает все новые области производства: развивается электрометаллургия, электротермия, электрохимия. Электрическая энергия начинает все более широко использоваться в самых разнообразных отраслях промышленности, на транспорте, в сельском хозяйстве и в быту.
Широкое применение переменного тока потребовало теоретического осмысления и математического описания физических процессов, происходящих в электрических машинах, линиях электропередач, трансформаторах. Расширяются исследования явлений в цепях переменного тока с помощью векторных и круговых диаграмм.
Огромную прогрессивную роль в анализе процессов в цепях сыграл комплексный метод, предложенный в 1893—1897 гг. Ч. П. Штейнмецом.
С развитием крупных энергосистем и увеличением дальности электропередач возникла серьезная научно-техническая проблема обеспечения устойчивости параллельной работы генераторов электростанции, которая была решена отечественными и зарубежными учеными. Теоретические основы электротехники становятся базой учебных дисциплин в вузах и фундаментом научных исследований в области электротехники.
6. Зарождение и развитие
Рост потребности в постоянном токе (электрохимия, электротранспорт и др.) вызвал необходимость в развитии преобразовательной техники, что привело к зарождению, а затем бурному развитию промышленной электроники.
Электротехника становится базой для разработки автоматизированных систем управления энергетическими и производственными процессами. Создание разнообразных электронных, в особенности микроэлектронных устройств позволяет коренным образом повысить эффективность автоматизации процессов вычислений, обработки информации, осуществлять моделирование сложных физических явлений, решение логических задач и др. при значительном снижении габаритов, устройств, повышении их надежности и экономичности.
Значительный прогресс в электронике наметился после создания больших интегральных схем (БИС), быстродействие их измеряется миллиардными долями секунды, а минимальные размеры составляют 2—3 мкм. Внедрение БИС привело к созданию микропроцессоров, осуществляющих цифровую обработку информации по программе, и микроЭВМ.
Быстрое развитие микроэлектроники обусловило возникновение и заметный прогресс новой области науки и техники — информатики. Уже в начале 80-х гг. как в нашей стране, так и за рубежом стали изготовлять микропроцессоры и микроЭВМ в одном кристалле. Все это дает огромный эффект в повышении надежности, снижении габаритов и потребляемой энергии микроэлектронных устройств, используемых в различных производственных процессах, автоматизированных систем управления, на транспорте, в бытовых устройствах.