Автор работы: Пользователь скрыл имя, 26 Сентября 2015 в 19:17, курсовая работа
По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.
По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров.
с
Введение……………………………………………………………………..4
6
1 Теоретическая часть………………………………………………………6
1.1 Описание турбоагрегата Т-100-130……………………………………6
7
2 Расчетная часть…………………………………………..………………8
7
Список использованной литературы………
с | |||
Введение………………………………………………………… |
6 | ||
1 Теоретическая часть…………………………… |
|||
1.1 Описание турбоагрегата Т-100-130……………………………………6 |
7 | ||
2 Расчетная часть…………………………………………..………………8 |
7 | ||
Список использованной литературы……………………………………..27 Приложение 1………………………………………………………………26 |
9 | ||
1 | |||
1 | |||
1 | |||
1 |
Турбина — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.
Применяется в качестве привода электрического генератора на тепловых, атомных и гидроэлектростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи, гидронасосах.
Ступень турбины состоит из двух основных частей. Рабочего колеса — лопаток установленных на роторе(подвижная часть турбины), которое непосредственно создаёт вращение. И Соплового аппарата — лопаток установленных на статоре (неподвижная часть турбины), которые поворачивают рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса.
По направлению движения потока рабочего тела различают аксиальные паро
По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.
По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.
На переднем конце вала устанавливается
предельный регулятор (
Рис.1.Паровая турбина с раскрытым статором. На верхней части статора видны лопатки соплового аппарата.
Паровая турбина — тепловой двигатель, в котором энергия пара преобразуется в механическую работу.
В лопаточном аппарате паровой турбины потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь преобразуется в механическую работу — вращение вала турбины.
Пар от парокотельного агрегата поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и воздействуя на них, приводит ротор во вращение.
Паровая турбина является одним из элементов паротурбинной установки (ПТУ).
Паровая турбина и электрогенератор составляют
По числу цилиндров турбины подразделяют на одноцилиндровые и двух—трёх-, четырёх- пятицилиндровые. Многоцилиндровая турбина позволяет использовать большие располагаемые тепловые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные материалы в частях высокого давления и раздвоение потока пара в частях среднего и низкого давления. По числу валов различают одновальные, двувальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором).
1.1 Описание турбоагрегата Т-100-130.
Турбина Т-100-130 впервые была изготовлена в 1961 г. на ТМЗ мощьностью 100 МВт
На начальные параметры пара 12,75 Мпа и 5650С, на частоту вращения 50 1/с с двухступенчатым теплофикационным отбором пара и номинальной тепловой производительностью 186,2 МВт (160 Гкал/ч).
Пар к стопорному клапану подводиться по двум паропроводам и затем по четырем паропроводам подводиться к регулирующим клапанам, привод которых осуществляется посредством сервомотора, рейки, зубчатого сектора и кулочкового вала. Открываясь последовательно, регулирующие клапаны подают пар в четыре ввареные в корпус сопловые коробки, откуда пар поступает на двухвенечную регулирующую ступень. Пройдя её и восемь нерегулируемых ступеней, пар через два патрубка покидает ЦВД и по четырём паровпускам подводиться к кольцевой сопловой коробке ЦСД, отлитой заодно с корпусом. ЦСД содержит 14 степеней. После двенадцатой ступени производиться верхний , а после последней ступени - нижний теплофикационный отбор.
Из ЦСД по двум реверсивным трубам, установленным над турбиной ,пар направляется в ЦНД двухпоточной конструкции. На входе каждого потока установлена поворотная регулирующая диафрагма с одним ярусом окон ,реализуя дросельное парораспределение в ЦНД.В каждом потоке ЦНД имеется по две ступени. Последняя ступень имеет длину лопатки 550 мм при среднем диаметре 1915 мм ,что обеспечивает сумарную площадь выхода 3,3 м2.Валопровод турбины состоит из роторов ЦВД,ЦСД,ЦНД и генератора. Роторы ЦВД и ЦСД соединены жесткой муфтой ,причём полумуфта ЦСД откована за одно целое с валом. Между роторами ЦСД и ЦНД ,ЦНД и генертора установлены полужёсткие муфты. Каждый из роторов уложен в двух опорных подшипниках. Комбинированный опорно-упорный подшипник расположен в корпусе среднего подшипника между ЦВД и ЦСД.Конструкция ЦВД в большей степени унифицирована с конструкцией ЦВД турбины
Р-40-130/13.
Ротор ЦСД-комбинированый: Диски первых восьми ступеней откованы за одно целое с валом, а остальных – насажены на вал с натягом.
Корпус ЦСД имеет вертикальный технологический разъём, соединяющий литую переднюю и сварную заднюю часть.
Ротор ЦНД –сборный :четыре рабочих диска посажены на вал с натягом.
Корпус ЦНД состоит из трёх частей :средней сварно-литой и двух выходных сварных.
Корпуса ЦВД и ЦСД опираются на корпуса подшипников с помощью лап. Выходная часть ЦСД опирается лапами на переднюю часть ЦНД.
ЦНД имеет встроенные подшипники и опирается на фундаментные рамы своим опорным поясом.
Фикс-пункт находиться на пересечении продольной оси турбины и осей двух поперечных шпонок ,установленных на продольных рамах в области левого (переднего) выходного патрубка. Взаимная центровка корпусов цилиндров и подшипников осуществляется системой вертикальных и поперечных шпонок, установленных между лапами цилиндров и их опорными поверхностями. Расширение турбины происходит в основном от фикс-пункта в сторону переднего подшипника и частично в сторону генератора.
|
(а) |
|
(б) |
(в) | |
(г) |
Информация о работе Расчет тепловой схемы станции с турбинами Т-100-130