Автор работы: Пользователь скрыл имя, 09 Сентября 2012 в 21:33, курсовая работа
Такое разнообразие требований вызывает определенные сложности при правильном выборе схемы выпарной установки, типа аппарата, числа ступеней в многокорпусной выпарной установке. В общем случае такой выбор является задачей оптимального поиска и выполняется технико-эКономическим сравнением различных вариантов с использованием компьютеров. В связи с тем, что при выполнении курсового проекта по процессам и аппаратам подобная задача пока не ставится, число корпусов в установке, давление греющего пара и вакуум в Конденсаторе обычно входят в задание на проектирование.
Введение ……………………………………………………….…….
1. Литературный обзор …………………………………….………..
2. Описание технологической схемы ……………………..………..
3. Расчет выпарной установки
3.1. Расчет концентраций упариваемого раствора. …………
3.2. Определение температур кипения растворов. ………….
3.3. Расчет полезной разности температур ……………….…
3.4. Определение тепловых нагрузок ………………….…..…
3.5. Выбор конструктивного материала …………….………..
3.6. Расчет коэффициентов теплопередачи …………………..
3.7. Распределение полезной разности температур…………..
3.8. Уточненный расчет поверхности теплопередачи………..
4 Расчёт барометрического конденсатора
4.1 Определение расхода охлаждающей воды
4.2 Расчёт диаметра барометрического конденсатора
4.3 Расчёт высоты барометрической трубы
Заключение……………………………………………………………..
Список использованной литературы …………………………………
Гидростатическая
депрессия обусловлена
где Н — высота кипятильных труб в аппарате, м;
ρ — плотность кипящего раствора, кг/м3;
ε — паронаполнение (объемная доля пара в кипящем растворе), м3/м3.
Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата Fop. При кипении водных растворов можно принять удельную тепловую нагрузку аппаратов с принудительной циркуляцией q = 40000 — 80000 Вт/м2.
Примем q = 40000 Вт/м2.
Тогда поверхность теплопередачи 1-го корпуса ориентировочно равна:
м2
где r1 — теплота парообразования вторичного пара, Дж/кг
ω1 - производительность по выпариваемой воде в первом корпусе, ω1= 0,96 кг/с (см 1.1)
По ГОСТ 11987—81 трубчатые аппараты с принудительной циркуляцией и вынесенной греющей камерой (тип 2, исполнение 2) состоят из кипятильных труб высотой 6 м при диаметре dH = 38 мм и толщине стенки бст = 2 мм.
Примем ε = 0,5.
Плотность водных растворов, в том числе раствора CaCl2 при температуре 20°С и соответствующих концентрациях в корпусах равна:
ρ1 = 1100 кг/м3,
ρ2 = 1155 кг/м3,
ρ3= 1347 кг/м3,
При определении плотности растворов в корпусах пренебрегаем изменением ее с повышением температуры от 20 °С до температуры кипения ввиду малого значения коэффициента объемного расширения и ориентировочно принятого значения ε.
Давления в среднем слое кипятильных труб корпусов (в Па) равны
Па
Па
Па
Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя:
Таблица 3
Давление, МПа |
Температура, 0С |
Теплота испарения, кДж/кг |
Р1ср= 0,7612 |
t1cр = 168.3 |
rвп1 = 2062 |
Р2ср= 0,395 |
t2cр = 142,9 |
rвп2 = 2141 |
Р3ср= 0,0352 |
t3cр = 71,4 |
rвп3 = 2330 |
Определяем гидростатическую депрессию по корпусам (в °С):
Сумма гидростатических депрессий равна:
0С
Температурная депрессия определяется по уравнению
где Т — температура паров в среднем слое кипятильных труб, К;
— температурная депрессия при атмосферном давлении.
Находим значение по корпусам (в °С):
=
=
=
Сумма температурных депрессий равна:
0С
Температуры кипения растворов в корпусах равны (в °С):
3.3 Расчет полезной разности температур
Общая полезная разность температур равна:
Полезные разности температур по корпусам (в °С) равны:
Тогда общая полезная разность температур
°С
Проверим общую полезную разность температур:
°С
3.4 Определение тепловых нагрузок
Расход греющего пара в 1-й корпус, производительность каждого корпуса по выпаренной воде и тепловые нагрузки по корпусам определим путем совместного решения уравнений тепловых балансов по корпусам и уравнения баланса по воде для всей установки:
(8)
(9)
(10)
где 1,03 – коэффициент, учитывающий 3 % потерь тепла в окружающую среду.
При решении уравнений (8)—(11) можно принять
Q1Конц, Q2Конц, Q3Конц - теплота концентрирования по корпусам, кВт;
tН — температура кипения исходного раствора при давлении в 1-м корпусе, °С:
°С
где - температурная депрессия для исходного раствора.
Анализ зависимостей теплоты концентрирования от концентрации и температуры показал, что она наибольшая для третьего корпуса. Поэтому рассчитаем теплоту концентрирования для 3-го корпуса:
Поскольку Q3Конц составляет значительно меньше Q3оp, в уравнениях тепловых балансов по корпусам пренебрегаем величиной QКонц.
Получим:
Решение системы уравнений дает следующие результаты:
D = 1,06 кг/с;
ω1 = 0,98 кг/с;
ω2 = 1,05 кг/с;
ω3 = 1,15 кг/с;
Q1 = 2120 кВт;
Q2 = 2035 кВт;
Q3 = 2256 кВт;
Полученные величины сводим в таблицу.
Наибольшее отклонение вычисленных нагрузок по испаряемой воде в каждом корпусе от предварительно принятых (ω1 = 0,96 кг/с, ω2 = 1,06 кг/с, ω3 = 1,16 кг/с) не превышает 3 %, поэтому не будем пересчитывать Концентрации и температуры кипения растворов по корпусам.
Таблица 4 Параметры растворов и паров по корпусам
Параметр |
Корпус | ||
1 |
2 |
3 | |
Производительность по испаряемой воде ω, кг/с |
0,98 |
1,05 |
1,15 |
Концентрация растворов х, % |
11,7 |
17,5 |
38,0 |
Давление греющих паров Рr, МПа |
1,079 |
0,7242 |
0,3694 |
Температура греющих паров tr, 0С |
183,2 |
166,3 |
140,6 |
Температурные потери , град |
5,08 |
7,21 |
31,92 |
Температура кипения раствора tк, 0С |
171,38 |
147,81 |
85,52 |
Полезная разность температур , град |
11,82 |
18,49 |
55,08 |
3.5 Выбор конструктивного материала
Выбираем конструкционный материал, стойкий в среде кипящего раствора CaCl2 в интервале изменения концентраций от 9 до 38 %. В этих условиях химически стойкой является сталь марки XI7. Скорость коррозии ее менее 0,1 мм/год, коэффициент теплопроводности λст = 25,1 Вт/(м · К).
3.6 Расчёт коэффициентов теплопередачи
Коэффициент теплопередачи для первого корпуса K1 определяют по уравнению аддитивности термических сопротивлений:
Примем,
что суммарное термическое
(м2 · К)/Вт
Коэффициент теплопередачи от конденсирующегося пара к стенке равен:
Расчет α1 ведут методом последовательных приближений.
В первом приближении примем ∆t1 = 2,0 град.
Тогда
= Вт/(м2·К),
Для установившегося процесса передачи тепла справедливо уравнение
Распределение температур в процессе теплопередачи от пара через стенку к кипящему раствору показано на рисунке
Рисунок 15 Распределение температур в процессе теплопередачи от пара к кипящему раствору через многослойную стенку:
1 – пар; 2 – конденсат; 3 – стенка; 4 – накипь; 5 – кипящий раствор
град
Тогда
град
Коэффициент теплоотдачи от стенки к кипящему раствору для пузырькового кипения в вертикальных кипятильных трубках при условии естественной циркуляции раствора равен:
Вт/(м2·К)
Физические свойства раствора CaCl2 в условиях кипения приведены в таблице 5 .
Таблица 5
Параметр |
Корпус | ||
1 |
2 |
3 | |
Теплопроводность раствора λ, Вт/(м∙К) |
0,61 |
0,62 |
0,68 |
Плотность раствора ρ, кг/м3 |
1100 |
1155 |
1347 |
Теплоемкость раствора с, Дж/(кг∙К) |
3420 |
3110 |
3071 |
Вязкость раствора μ, Па∙с |
0,17·10-3 |
0,24·10-3 |
1,16·10-3 |
Поверхностное натяжение σ, Н/м |
0,066 |
0,076 |
0,096 |
Теплота парообразования rв, Дж/кг |
2065∙103 |
2141∙103 |
2330∙103 |
Плотность пара ρ, кг/м3 |
2,0 |
1,8 |
0,099 |
Проверим правильность первого приближения по равенству удельных тепловых нагрузок:
Вт/м2
Вт/м2
Как видим,
Для второго приближения примем ∆t1 =4,0 град.
Пренебрегая изменением физических свойств конденсата при изменении температуры на 1,0 град, рассчитываем α1 по соотношению:
Вт/(м2∙К)
Тогда получим:
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Очевидно, что .
Для третьего приближения примем ∆t1 = 5,0 град.
Пренебрегая изменением физических свойств конденсата при изменении температуры , рассчитываем α1 по соотношению:
Вт/(м2∙К)
Тогда получим:
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Очевидно, что .
Для расчета в четвертом приближении строим графическую зависимость удельной тепловой нагрузки q от разности температур между паром и стенкой в первом корпусе и определяем = 4,42 град.
Отсюда получим:
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, .
17247·100/17478=98,67%
Так как расхождение между тепловыми нагрузками не превышает 3 %, на этом расчет коэффициентов α1 и α2 закончим.
Находим К1:
Вт/(м2∙К)
Далее рассчитаем коэффициент теплопередачи для второго корпуса К2.
В первом приближении примем ∆t1 =5,0 град.
Вт/(м2∙К)
град
град
Вт/(м2·К)
Вт/м2
Вт/м2
Как видим,
Для второго приближения примем ∆t1 = 6,0 град.
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим,
Для расчета
в третьем приближении строим
графическую зависимость
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, .
30857·100/30102=102,5%
Так как расхождение между тепловыми нагрузками не превышает 3 %, на этом расчет коэффициентов α1 и α2 закончим.
Определим К2:
Вт/(м2∙К)
Рассчитаем теперь коэффициент теплопередачи для третьего корпуса К3
В первом приближении примем ∆t1 =16,0 град.
Вт/(м2∙К)
град
град
Вт/(м2·К)
Вт/м2
Вт/м2
Как видим,
Для второго приближения примем ∆t1 = 20,0 град.
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим,
Для расчета
в третьем приближении строим
графическую зависимость
Вт/(м2∙К)
град
град
Вт/(м2∙К)
Вт/м2
Вт/м2
Как видим, .
81248·100/82009=99,07%
Так как расхождение между тепловыми нагрузками не превышает 3 %, на этом расчет коэффициентов α1 и α2 закончим.