Автор работы: Пользователь скрыл имя, 23 Мая 2013 в 16:50, реферат
Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это — одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.
Свойства водорода 3
Производство водорода 3
Потенциал применения водорода 7
Стоимость водорода 14
Ситуация развивается чрезвычайно быстро 15
Электроводородный генератор (ЭВГ) 15
Перспективы ЭВГ 19
Список литературы 24
Московский Государственный Технический Университет
Калужский Филиал
Реферат
По дисциплине Энергетические машины
На тему
Водородная энергетика
Выполнил: Хомяков И.А
Группа ТСД-81 С2
Принял: Парсегов Э.А.
Калуга 2013
Оглавление
Свойства водорода 3
Производство водорода 3
Потенциал применения водорода 7
Стоимость водорода 14
Ситуация развивается чрезвычайно быстро 15
Электроводородный генератор (ЭВГ) 15
Перспективы ЭВГ 19
Список литературы 24
В свободном состоянии и при
нормальных условиях водород — бесцветный
газ, без запаха и вкуса. Относительно
воздуха водород имеет
Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это — одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.
При сжигании в чистом кислороде единственные продукты — высокотемпературное тепло и вода. Таким образом, при использовании водорода не образуются парниковые газы и не нарушается даже круговорот воды в природе.
Запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Разрыв этих связей позволяет производить водород и затем использовать его как топливо. Разработаны многочисленные процессы по разложению воды на составные элементы.
При нагревании свыше 2500°С вода разлагается на водород и кислород (прямой термолиз). Столь высокую температуру можно получить, например, с помощью концентраторов солнечной энергии. Проблема здесь состоит в том, чтобы предотвратить рекомбинацию водорода и кислорода.
В настоящее время в мире большая
часть производимого в
Начиная с 70-х годов прошлого века в стране были выполнены и получили необходимое научно-техническое обоснование и экспериментальное подтверждение проекты высокотемпературных гелиевых реакторов (ВТГР) атомных энерготехнологических станций (АЭТС) для химической промышленности и черной металлургии. Среди них АБТУ-50, а позднее — проект атомной энерготехнологической станции с реактором ВГ-400 мощностью 1060 МВт(т) для ядерно-химического комплекса по производству водорода и смесей на его основе, по выпуску аммиака и метанола, а также ряд последующих проектов этого направления.
Основой для проектов ВТГР послужили разработки ядерных ракетных двигателей на водороде. Созданные в нашей стране для этих целей испытательные высокотемпературные реакторы и демонстрационные ядерные ракетные двигатели продемонстрировали работоспособность при нагреве водорода до рекордной температуры 3000 К.
Высокотемпературные реакторы с гелиевым теплоносителем — это новый тип экологически чистых универсальных атомных энергоисточников, уникальные свойства которых — способность вырабатывать тепло при температурах более 1000°С и высокий уровень безопасности — определяют широкие возможности их использования для производства в газотурбинном цикле электроэнергии с высоким КПД и для снабжения высокотемпературным теплом и электричеством процессов производства водорода, опреснения воды, технологических процессов химической, нефтеперерабатывающей, металлургической и др. отраслей промышленности.
Одним из наиболее продвинутых в этой области является международный проект ГТ-МГР, который разрабатывается совместными усилиями российских институтов (ОКБМ, РНЦ «Курчатовский институт», ВНИИНМ, НПО «Луч») и американской кампании GA при управлении и финансировании со стороны Минатома РФ и DOE US. С проектом сотрудничают также кампании Фраматом и Фуджи электрик.
Рис. 1.
Модульный гелиевый реактор с паровой конверсией метана.
К настоящему времени разработан проект
модульного гелиевого реактора для
генерации электричества (с КПД ~
50%) с использованием прямого газотурбинного
цикла. Энергетическая установка ГТ-МГР
состоит из двух связанных воедино
блоков: модульного высокотемпературного
гелиевого реактора (МГР) и газотурбинного
преобразователя энергии
Рис. 2.
Компоновка модульного гелиевого реактора в здании.
Термохимический процесс получения
водорода из воды использует цикл реакций
с химически активными
Электролитическое разложение воды (электролиз).
Электролитический водород
В мире лучшими из промышленных воднощелочных электролизеров считаются канадские, изготавливаемые корпорацией «Stuart Energy». Они стабильно в течение длительного, ресурса обеспечивают удельный расход менее 5 кВт • ч/нм3 H2, что делает их (при низкой стоимости потребляемой электроэнергии и мировых ценах на метан) конкурентоспособными с получением водорода конверсией природного газа с применением коротко-цикловой адсорбции. Кроме того, эти электролизеры позволяют изменять нагрузку в пределах от 3% до 100%, в то время как изменение нагрузки на электролизерах типа ФВ-500, приводит к существенному сокращению срока их работы.
Особый интерес представляет электролиз в сочетании с возобновляемыми источниками энергии. Например, Исследовательский центр Энергии Университета Гумбольта разработал автономную солнечно-водородную систему, которая использует фотоэлектрический элемент мощностью 9.2 кВт, чтобы обеспечить привод компрессоров для аэрации бассейнов рыборазведения, и биполярный щелочной электролизер мощностью 7.2 кВт, способный производить 25 л H2/мин. Система работает автономно начиная с 1993 г. Когда отсутствует солнечный свет, запасенный водород служит топливом для полуторакиловаттного ЭХГ, обеспечивающего привод компрессоров.
В Европе в конце XIX столетия сжигали топливо, называемое «городской, или синтез-газ» — смесь водорода и монооксида углерода (СО). Несколько стран, включая Бразилию и Германию, кое-где все еще применяют это топливо. Применяли водород и для перемещения по воздуху (дирижабли и воздушные шары), начиная с первого полета во Франции 27 августа 1784 г. Жака Шарля на воздушном шаре, наполненным водородом. В настоящее время многие отрасли промышленности используют водород для очистки нефти и для синтеза аммиака и метанола. Космическая система «Шаттл» использует водород как топливо для блоков разгона. Водород применяется и для запуска ракеты-носителя «Энергия», предназначенной для доставки на орбиту сверхтяжелых грузов, в частности, корабля «Буран».
Автомашины и камеры сгорания летательных аппаратов сравнительно легко конвертируются на применение в качестве топлива водорода. В нашей стране впервые автомобильный двигатель на водороде работал в блокадном Ленинграде в 1942 году. В 80-е годы Авиационный научно-технический комплекс (АНТК) имени А.Н. Туполева создал летающую лабораторию (на базе самолета ТУ-154В), использующую в качестве топлива жидкий водород. В результате был создан первый в мире самолет на криогенном топливе — жидком водороде и сжиженном природном газе (СПГ), — ТУ-155.
1 Ленинградская атомная
Сейчас наблюдается новый
Однако наибольшее внимание исследователей, разработчиков, промышленности и инвесторов привлекают к себе топливные элементы. Топливные элементы (электрохимические генераторы — ЭХГ) — тип технологий, использующих реакцию окисления водорода в мембранном электрохимическом процессе, который производит электричество, тепловую энергию и воду. Американская и советская космические программы использовали ЭХГ в течение десятилетий. Топливные элементы (ТЭ) для привода автомобилей и автобусов успешно разрабатываются для следующего поколения транспортных средств, а также для автономных систем энерголитания. Твердополимерные (ТП) ТЭ по техническому уровню находятся на пороге коммерциализации. Однако в настоящее время их высокая стоимость (энергоустановка ~104 долл./кВт) в значительной степени сдерживает этот процесс. Многие компании прогнозируют снижение стоимости энергоустановок с ТП ТЭ на порядок и более при их массовом производстве. Для массового применения ТП ТЭ в автотранспорте их стоимость должна быть снижена до 50-100 долл./кВт (при современной стоимости бензина и отсутствии финансовых механизмов, учитывающих ущерб от выхлопных газов). В недалекой перспективе в результате ужесточения стандартов на выбросы, повышения стоимости бензина и снижения стоимости ТЭ ожидается изменение конъюнктуры в пользу автомобилей и автономных энергоустановок мощностью до 100-300 кВт с ТП ТЭ, В этих направлениях НИОКР развиваются с возрастающей активностью. В США, Германии, Японии, Канаде созданы и эксплуатируются опытные водородные автозаправочные станции. Первые продажи водородных автомобилей планируются на ближайшие годы2.
2 Подробнее — см. статью С.П.
Малышенко в N 7, 2003.Создание автомобилей
с принципиально новыми типами
двигателей требует больших