Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 20:53, реферат
В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.
Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Омский
Государственный Технический |
Реферат |
По дисциплине: «Теплотехника» |
на тему: «Второй закон термодинамики» |
Выполнил студент группы:_____ ______________________________ Проверил преподаватель:_______ |
В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.
Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена.
Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях.
Первый
закон термодинамики
Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д. В этой связи второй закон термодинамики существенно дополняет первый.
В качестве третьего начала термодинамики принимается принцип недостижимости абсолютного нуля.
В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.
Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических машин. В соответствии с этим законом, например, теплота самопроизвольно может переходить только от тела с большей температурой к телу с меньшей температурой. Для осуществления обратного процесса должна быть затрачена определенная работа. В связи с этим второй закон термодинамики можно сформулировать следующим образом: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).
Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:
,
где l – конечная работа,
v1 и v2 – соответственно начальный и конечный удельный объем;
но процесс расширения не может продолжаться бесконечно, следовательно, возможность преобразования теплоты в работу ограничена.
Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле.
Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплоты dQ, сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условия dQ=dU+dL и dq=du+dl, которое показывает, что без подвода теплоты (dq=0) внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру дает:
, , так как .
Здесь QЦ и LЦ - соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L1| - |L2| положительных и отрицательных работ элементарных процессов цикла.
Элементарное количество теплоты
можно рассматривать как подвод
LЦ=QЦ=|Q1| - |Q2|.
Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1 может быть превращено в работу, так как количество теплоты Q2 передается холодному источнику.
Условия работы теплового двигателя сводятся к следующим:
В связи с этим второму закону термодинамики можно дать еще несколько формулировок:
Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта.
В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки.
В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.
М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий теплоту в работу. В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы теплоту от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю – когда в системе имеется разность температур горячего и холодного источников).
Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника теплоты. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу. Тепловую машину, которая действовала бы таким образом, В.Ф.Оствальд удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом: осуществление вечного двигателя второго рода невозможно.
Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики; в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике, так, что с количественно стороны процесс получения работы из теплоты в данном случае не был бы невыполнимым. Однако существование такого двигателя невозможно с точки зрения качественной стороны процесса перехода теплоты между телами.
Несоответствие между
Часто второе начало термодинамики
преподносится как объединенный
принцип существования и
Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:
.
Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:
.
Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка.
В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно.
В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов.
Вывод о существовании абсолютной температуры T и энтропии s как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые.
В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и т.д. можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику. Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты любых других способов получения работы (например, получения механической работы за счет кинетической энергии тела, получения электроэнергии за счет механической работы, производства работы магнитным полем за счет электроэнергии и т.д.). При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту.