Автор работы: Пользователь скрыл имя, 08 Сентября 2013 в 20:52, отчет по практике
Электрическая машина — это электромеханический преобразователь энергии, основанный на явлениях электромагнитной индукции и силы Лоренца, действующей на проводник с током, движущийся в магнитном поле.
Возможность создания электрической машины как электромеханического преобразователя базируется на электромагнитном взаимодействии, которое осуществляется посредством электрического тока и магнитного поля. Электрическая машина, в которой электромагнитное взаимодействие осуществляется при помощи магнитного поля называется индуктивной, а в которой при помощи электрического — ёмкостной. Ёмкостные машины практически не используются, так как при конечной проводимости воздушной среды (при наличии влаги) заряды будут исчезать из активной зоны электрической машины в землю (то есть огромные потери энергии).
1 Введение...……………………………..………………………………………...…3
2 Выбор средств регулирования напряжения в системе электроснабжения…….6
2.1 Средства регулирования напряжения……………....................……...…6
2.2 Выбор средств регулирования напряжения………………..………..…14
3 Синхронный двигатель и асинхронный двигатель………….………….……...16
3.1 Конструкция и принцип действия синхронного двигателя…………...16
3.2 Конструкция асинхронных машин…………………………………......18
3.3 Принцип действия асинхронных машин…………………………….…21
4 Список литературы…………………………….…………………………………24
3 Синхронный двигатель и асинхронный двигатель
3.1 Конструкция и принцип действия синхронного двигателя
В отличие от асинхронного
двигателя частота вращения синхронного
двигателя постоянна при
В статоре синхронного
электродвигателя размещается обмотка,
подключаемая к сети трехфазного
тока и образующая вращающееся магнитное
поле. Ротор двигателя состоит
из сердечника с обмоткой возбуждения.
Обмотка возбуждения через
Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рисунке 6а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 1б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.
Рисунок 6 – Ротор синхронного двигателя
Рассмотрим принцип работы синхронного двигателя на модели (рисунок 7).
Рисунок 7 – Принцип работы синхронного двигателя
Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол α. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол α. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными, n2 = n1.
Синхронный реактивный двигатель
- это синхронный двигатель, на роторе
которого отсутствует обмотка
Ротор синхронного реактивного двигателя изготавливается из ферромагнитного материала и должен иметь явновыраженные полюсы. Вращающееся магнитное поле статора намагничивает ротор. Явнополюсный ротор имеет неодинаковые магнитные сопротивления по продольной и поперечной осям полюса. Силовые линии магнитного поля статора изгибаются, стремясь пройти по пути с меньшим магнитным сопротивлением. Деформация магнитного поля вызовет, вследствие упругих свойств силовых линий, реактивный момент, вращающий ротор синхронно с полем статора.
Если к вращающемуся ротору приложить тормозной момент, ось магнитного поля ротора повернется на угол θ относительно оси магнитного поля статора.
С увеличением нагрузки этот угол возрастает. Если нагрузка превысит некоторое допустимое значение, двигатель остановится, выпадет из синхронизма.
У синхронных двигателей отсутствует пусковой момент. Это объясняется тем, что электромагнитный вращающий момент, воздействующий на неподвижный ротор, меняет свое направление два раза за период Т переменного тока. Из-за своей инерционности, ротор не успевает тронуться с места и развить необходимое число оборотов.
В настоящее время применяется асинхронный пуск синхронного двигателя. В пазах полюсов ротора укладывается дополнительная короткозамкнутая обмотка.
Вращающее магнитное поле
статора индуктирует в
3.2 Конструкция асинхронных машин
Асинхронный двигатель состоит
из двух основных частей, разделенных
воздушным зазором: неподвижного статора
и вращающегося ротора. Каждая из этих
частей имеет сердечник и обмотку.
При этом обмотка статора включается
в сеть и является как бы первичной,
а обмотка ротора – вторичной,
так как энергия в нее
Конструкции асинхронных машин делятся на два основных типа: с короткозамкнутым ротором и фазным ротором. Наиболее распространение получили двигатели с короткозамкнутым ротором, которые в серии 4А выполняются на все мощности, включая 400 кВт.
Обмотки короткозамкнутых роторов выполняются литыми из алюминия или его сплавов. При заливке одновременно отливаются стержни, лежащие в пазах, и короткозамыкающие кольца с размещенными на их торцах вентиляционными лопатками и штырями для крепления балансировочных грузиков.
Короткозамкнутые роторы
крупных машин и специальных
асинхронных машин с
Асинхронные машины с фазным ротором имеют на роторе обмотку из круглых или прямоугольных проводов, которая выполняется так же, как и обмотка статора.
Асинхронные двигатели с короткозамкнутым ротором серии 4А можно разделить на две разновидности по степени защиты и способу охлаждения. Машины закрытые, защищенные от попадания внутрь ее брызг любого направления и предметов диаметром более 1 мм, имеют внешний обдув вентилятором.
Наружный обдув в закрытых двигателях осуществляется вентилятором, окруженным кожухом . Для улучшения теплоотдачи станина двигателя имеет продольные радиальные ребра. Вентиляционные лопатки ротора перемешивают воздух внутри машины, отводя тепло от более нагретых лобовых частей обмотки.
В двигателях защищенного исполнения со степенью защиты 1Р23 применена двусторонняя симметричная радиальная система вентиляции. Воздух попадает в машину через отверстия в щитах, а выходит через отверстия в щитах, а выходит через отверстия в станине. Напор воздуха внутри машины создается лопатками, отлитыми вместе с короткозамкнутой обмоткой ротора, а диффузоры, укрепленные на подшипниковых щитах, направляют поток воздуха.
В двигателях с фазным ротором обмотка ротора выполняется всыпной из круглого провода или стержневой из меди прямоугольного сечения.
Отличительной особенностью машин с фазным ротором является наличие на роторе обмотки из проводников круглого или прямоугольного сечения, начала которой выведены на контактные кольца. Узел контактных колец вынесен из станины, а контактные кольца закрыты кожухом. Узел контактных колец – консольного типа. Контактные кольца, опрессованные пластмассой, насаживаются на вал двигателя, они выполняются чугунными или медными. Выводные концы обмотки ротора подходят к трем кольцам через внутреннее отверстие в вале ротора. Обмотка ротора соединяется в звезду.
Токосъемный аппарат состоит из щеток и щеткодержателей. Щеткодержатели укреплены на изолированной части пальца, металлический конец которого ввинчен в прилив подшипникового щита.
Статор асинхронной машины с короткозамкнутым или с фазным ротором состоит из магнитопровода с обмоткой и станины. Магнитопровод статора набирается из листов электротехнической стали, изолированных друг от друга и имеющих на внутренней поверхности пазы.
Сердечник статора состоит из отдельных пакетов, которые после сборки скрепляют скобами и укрепляют в станине. При сборке пакетов магнитопровода статора может быть выполнен скос пазов. Форма пазов и число пазов на статоре зависят от мощности и частоты вращения.
В производстве асинхронных двигателей используются горячекатаные и холоднокатаные стали толщиной 0,35 и 0,5 мм. Горячекатаные стали не имеют магнитной анизотропии, а холоднокатаные имеют значительную анизотропию. Горячекатаная сталь марки 1211 при напряженности магнитного поля Н = 2500 А/м имеет индукцию 1,53 Тл, а удельные потери = 3,3 Вт/кг.
Для асинхронных двигателей серии 4А с высотой оси вращения до 160 мм применяется холоднокатаная рулонная сталь марки 2013 с = 1,65 Тл и = 2,5 Вт/кг. Для двигателей с высотой оси вращения свыше 160 мм используется холоднокатаная рулонная сталь марки 2212 с = 1,6 Тл и = 2,2 Вт/кг.
Обычно из одного рулона штампуются листы как статора, так и ротора. Так как частота перемагничивания ротора небольшая и равна 1-2 Гц, листы ротора не изолируются друг от друга.
Станины двигателей изготавливаются
из алюминиевого сплава АЛ-2, для двигателей
большой мощности – из чугуна. Станины
выполняются с прилитыми
Подшипниковые щиты выполняются из сплава АЛ-2. Отверстие под подшипник армировано стальной втулкой. Щиты двигателей большой мощности выполняются из чугуна. Для упрочнения конструкции щиты имеют ребра. В двигателях серии 4А одна подшипниковая опора со стороны вала плавающая, а вторая – фиксирующая. Подшипник, устанавливаемый в фиксирующей опоре, воспринимает радиальную и осевую нагрузки. Подшипник в плавающей опоре свободно перемещается в аксиальном направлении, предотвращая заклинивание при отклонении от предельных размеров и тепловых расширениях. Подшипниковый узел состоит из подщипников, подшипниковых крышек и элементов уплотнения. Подшипниковые узлы выполняются с устройством для пополнения смазки, а также с подшипниками, имеющими двустороннее уплотнение и постоянно заложенную смазку, рассчитанную на весь срок службы.
3.3 Принцип действия асинхронных машин
В асинхронной машине одну из обмоток размещают на статоре 1 (рисунок 8, а), а вторую - на роторе 3. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой трехфазную (или в общем случае многофазную) обмотку, катушки которой размещают равномерно по окружности статора. Фазы обмотки статора АХ, BY и CZ соединяют по схеме Υ или Δ и подключают к сети трехфазного тока (рисунок 8,б). Обмотку ротора 4 выполняют трехфазной или многофазной и размещают равномерно вдоль окружности ротора. Фазы ее в простейшем случае замыкают накоротко.
Рисунок 8 - Электромагнитная схема асинхронной машины, направления токов и электромагнитного момента при работе в двигательном режиме
При питании обмотки статора трехфазным током создается вращающееся магнитное поле, частота вращения которого (синхронная)
n1 = 60f1 /p.
Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС. На рисунке 7, а показано, согласно правилу правой руки, направление ЭДС, индуцированной в проводниках ротора при вращении магнитного потока Ф по часовой стрелке, при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки. Активная составляющая тока ротора совпадает по фазе с индуцированной ЭДС; поэтому условные обозначения (крестики и точки) на рисунке 8 показывают одновременно и направление активной составляющей тока.
На проводники с током,
расположенные в магнитном
Относительную разность частот вращения магнитного поля и ротора называют скольжением:
s = (п1 - п2)/п1.
Скольжение часто выражают в процентах
s = [(п1 - п2 )/п1 ] • 100. (7 а)
Очевидно, что при двигательном режиме 1 > s > 0.
Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля п1 то изменится направление ЭДС в проводниках ротора и активной составляющей тока ротора, т. е. асинхронная машина перейдет в генераторный режим (рисунок 9, а). При этом изменит свое направление и электромагнитный момент М, который станет тормозящим. В генераторном режиме асинхронная машина получает механическую энергию от первичного двигателя, превращает ее в электрическую и отдает в сеть, при этом s < 0.