Автор работы: Пользователь скрыл имя, 23 Октября 2014 в 17:44, контрольная работа
Технологический процесс ткачества характеризуется как наиболее многомашинный участок текстильных предприятий, и для него в полной мере характерны особенности массового производства. Вид перерабатываемых волокон (хлопковое, шерстяное, шелковое, льняное) почти не влияет на набор технологического оборудования и на объем автоматизации технологического процесса.
Введение……………………………………………………………………………...5
1.Технологический раздел…………………………………………………………..6
1.1 Описание технологического процесса реализуемого на конкретном виде технологического оборудования……………………………………………............6
1.2. Обоснование необходимости автоматизированного контроля и управления конкретными параметрами технологического процесса………………………….7
1.3. Требования к автоматизированным системам контроля и управления……..7
2. Раздел автоматизации…………………………………………………………….8
2.1 Обоснование по выбору навой структуры модернизируемой системы автоматизации……………………………………………………………………….8
2.2 Идентификация объекта автоматизации……………………………………. 9
2.3 Оптимизация параметров настройки регулятора…………...………………..14
2.4 Анализ устойчивости и качества системы управления……………………….16
Заключение……………………………………………………………………………..19
Литература……………………………………………………………………………...
1.1 Описание технологического
1.2. Обоснование необходимости автоматизированного контроля и управления конкретными параметрами технологического процесса………………………….7
1.3. Требования к
2. Раздел автоматизации…………………………
2.1 Обоснование по выбору
навой структуры модернизируемой системы
автоматизации……………………………………………
2.2 Идентификация объекта
2.3 Оптимизация параметров настройки регулятора…………...………………..14
2.4 Анализ устойчивости и качества системы управления……………………….16
Заключение……………………………………………………
Литература……………………………………………………
Приложения……………………………………………………
ВВЕДЕНИЕ
Технологический процесс ткачества характеризуется как наиболее многомашинный участок текстильных предприятий, и для него в полной мере характерны особенности массового производства. Вид перерабатываемых волокон (хлопковое, шерстяное, шелковое, льняное) почти не влияет на набор технологического оборудования и на объем автоматизации технологического процесса.
Высокие темпы развития шинной, химической, нефтеперерабатывающей и нефтехимической промышленности неразрывно связаны с проведением больших работ по автоматизации.
Разнообразие технических средств автоматизации, выпускаемых отечественной приборостроительной промышленностью, глубокое знание процессов химической технологии, а также достаточно хорошо разработанная теория автоматического управления позволяют успешно внедрять автоматизацию.
Задачи, которые решаются при автоматизации современных шинных производств, весьма сложны и требуют от специалистов знания не только устройства различных приборов, но и общих принципов составления систем автоматического управления.
Автоматизация приводит к улучшению главных показателей эффективности производства: увеличению количества, улучшению качества и снижению себестоимости выпускаемой продукции. Внедрение автоматических устройств обеспечивает высокое качество продукции, сокращение брака и отходов, уменьшение затрат сырья и энергии, уменьшение численности основных рабочих, снижение капитальных затрат на строительство зданий (производство организуется под открытым небом), удлинение межремонтных сроков эксплуатации оборудования (оборудование работает в оптимальных режимах, которые были учтены при его расчете и изготовлении).
Проведение некоторых современных технологических процессов возможно только при условии их полной автоматизации (например, процессы на атомных установках и в паровых котлах высокого давления, процессы дегидрирования и др.). При ручном управлении такими процессами малейшее замешательство человека и несвоевременное воздействие его на процесс могут привести к серьёзным последствиям.
Внедрение специальных автоматических устройств способствует безаварийной работе оборудования, исключает случаи травматизма, предупреждает загрязнение атмосферного воздуха и водоемов промышленными отходами.
В текстильной промышленности вопросам
автоматизации уделяется особое внимание.
Это объясняется сложностью и большой
скоростью протекания технологических
процессов, высокой чувствительностью
их к нарушению режима, вредностью условий
работы, взрыво- и пожароопасностью
перерабатываемых веществ и т.д.
Технологический
раздел
1.1 Описание технологического процесса
В настоящее время существует около 40 модификаций чесальных машин, предназначенных для чесания волокон различных видов и отличающихся друг от друга производительностью.
Чесальная машина ЧМД предназначена для выработки чесальной ленты из средневолокнистого хлопка, а также из смеси этого хлопка с химическими волокнами длиной до 40 мм (до 25% химических волокон), удовлетворяющей требованиям, предъявляемым к полуфабрикату для пневмомеханического прядения. Машина может применяться в автоматических поточных линиях.
На машине производится разделение пучков волокон на отдельные волокна путем многократного чесания, а также очистка их от сорных примесей с удалением пуха и непрядомых волокон. Очищенное и расчесанное волокно на выходе преобразуется в ленту, укладываемую лентоукладчиком в таз.
Машина эксплуатируется в чесальных цехах хлопкопрядильного производства.
Однако во всех случаях для электропривода чесальных машин применяют асинхронные электродвигатели с короткозамкнутым ротором, так как процесс чесания не требует регулирования скорости рабочих органов машины. Следует отметить, что электропривод чесальных машин работает в исключительно тяжелых условиях. Это объясняется значительными маховыми массами вращающихся органов машины, которые в 100—300 раз превосходят маховые моменты приводных электродвигателей. Вследствие этого в год выходит из строя около 40% электродвигателей, установленных на чесальных машинах.
С целью повышения надежности работы электропривода чесальных машин привод рабочих органов осуществляется от двух асинхронных электродвигателей, один из которых приводит в действие главный и приемный барабаны, вентилятор и гребенную коробку, а второй — систему питания.
Трехскоростной электродвигатель М2 обеспечивает заправочную скорость и одну из двух рабочих скоростей (установочную), что достигается переключением обмоток статора в звезду, треугольник или двойную звезду, т. е. изменением числа полюсов электродвигателя.
Рисунок 1. Структурная схема управления чесальной машиной
Структурная схема управления чесальной машиной (см. рисунок 1) предусматривает:
Пуск машины производится следующим образом. Сначала при отключенной фрикционной муфте главного барабана включают электродвигатель М1. Разгон его длится 5—10 с. В это время путевые выключатели фрикционной муфты исключают возможность пуска электродвигателя М2. Затем включается фрикционная муфта и начинается разгон главного барабана машины (60—120 с). После разгона главного барабана при включенной фрикционной муфте включают электродвигатель М2: сначала кнопкой «заправка» на пониженную скорость, а затем кнопкой «работа» — на рабочую скорость.
При всех нарушениях технологического процесса отключается технологических неполадок пуск электродвигателя М2 производится в приведенной выше последовательности.
Функциональная схема автоматизации чесальной машины показана на рисунке 2. Мнемосхема выполненная в InTouch на рисунке 3.
Рисунок 2.Функционалная схема автоматизации чесальной машины.
Регулятор ОПЛ на чесальной машине ЧМД, разработанный фирмой SIEMENS, и предназначен для контроллеров SIMATIC, имеет фотоэлектрический датчик ФД, который устанавливают на выходе вытяжной пары. Привод выпускного цилиндра осуществляется с постоянной частотой вращения от основного электродвигателя, а привод питающего цилиндра – с переменной частотой вращения через вариатор, коэффициент передачи которого изменяется в соответствии с сигналом регулятора ОПЛ.
При изменении ОП ленты на выходе вытяжной пары сигнал с фотоэлектрического датчика ФД подается на вход преобразователя ПЭП, и далее на контроллер, где сравнивается с заданием. Сигнал рассогласования подается на реверсивный двигатель РД, который перемещает ремень вариатора и тем самым, изменяет коэффициент передачи вращения питающего привода.
Рисунок 3. Мнемосхема чесальной машины
1.2 Обоснование
необходимости
Одной из основных операций на чесальных, ленточных и прядильных машинах является «утонение» продукта, причем к равномерности свойств получаемого продукта по длине (толщине, прочности и т.д.) предъявляются очень высокие требования.
Задачу выравнивания продукта решают разными методами. В некоторых случаях – за счет увеличения переходов (продукт утоняют вытягиванием, а затем, складывая несколько лент, снова их вытягивают). Однако в последнее время все большее внимание уделяется автоматическим методам выравнивания продукта, позволяющим получать продукцию высокого качества с меньшим количеством технологического оборудования. Развивается тенденция к сокращению не только отдельных однотипных машин (например, чесальных), но и целых переходов.
Основным показателем, характеризующим равномерность продукта (ленты, ровницы, пряжи) по толщине, является объемная плотность. В существующих системах автоматического регулирования ОПЛ контролируется в основном механическими, индуктивными, пневматическими, фотоэлектрическими и радиоактивными первичными преобразователями.
Регуляторы ОПЛ, или системы автоматического выравнивания продукта (САВ), нашли применение на трепальных машинах, на чесальных машинах , в хлопкопрядении при бесхолстовом питании и в льнопрядении. Ведутся разработки САВ для чесальных машин различных конструкций. Регулирование ОПЛ, как правило, осуществляется изменением вытяжки за счет изменения скорости вытяжных (питающих или выпускных) цилиндров машин.
1.3 Требования к автоматизированным системам контроля и управления.
Требования к функциям АСУ
АСУ в необходимых объемах должна автоматизировано выполнять:
• сбор, обработку и анализ информации (сигналов, сообщений, документов и т. п.) о состоянии объекта управления;
• выработку управляющих воздействий (программ, планов и т. п.);
• передачу управляющих воздействий (сигналов, указаний, документов) на исполнение и ее контроль;
• реализацию и контроль выполнения управляющих воздействий;
• обмен информацией (документами, сообщениями и т. п.) с взаимосвязанными автоматизированными системами.
Состав автоматизированных функций (задач, комплексов задач - далее функций) АСУ должен обеспечивать возможность управления соответствующим объектом в соответствии с любой из целей, установленных в ТЗ на АСУ.
Состав автоматизированных функций АСУ и степень их автоматизации должны быть технико-экономически и (или) социально обоснованы с учетом необходимости освобождения персонала от выполнения повторяющихся действий и создания условий для использования его творческих способностей в процессе работы.
Требования к техническому обеспечению АСУ
Комплекс технических средств АСУ должен быть достаточным для выполнения всех автоматизированных функций АСУ. В комплексе технических средств АСУ должны в основном использоваться технические средства серийного производства. При необходимости допускается применение технических средств единичного производства.
Тиражируемые АСУ и их части должны строиться на базе унифицированных технических средств.
Технические средства АСУ должны быть размещены с соблюдением требований, содержащихся в технической, в том числе эксплуатационной, документации на них, и так, чтобы было удобно использовать их при функционировании АСУ и выполнять техническое обслуживание.
Размещение технических средств, используемых персоналом АСУ при выполнении автоматизированных функций, должно соответствовать требованиям эргономики: для производственного оборудования по ГОСТ 12.049-80, для средств представления зрительной информации по ГОСТ 21829-76, в том числе для табло коллективного пользования из цифровых знакосинтезирующих электролюминесцентных индикаторов по ГОСТ 21837-76.
Технические средства АСУ, используемые при взаимодействии АСУ с другими системами, должны быть совместимы по интерфейсам с соответствующими техническими средствами этих систем и используемых систем связи.
В АСУ должны быть использованы технические средства со сроком службы не менее десяти лет. Применение технических средств с меньшим сроком службы допускается только в обоснованных случаях и по согласованию с заказчиком АСУ.