Гипсовые вяжущие вещества

Автор работы: Пользователь скрыл имя, 06 Октября 2013 в 21:00, реферат

Описание работы

Гипсовыми вяжущими веществами называют материалы, для получения которых используют сырье, содержащее сернокислый кальций. Чаще это природные гипс CaSO4-2H2O и ангидрит CaSO4, реже — некоторые побочные, продукты химической промышленности (фосфогипс, борогипс).

Файлы: 1 файл

Гипсовые вяжущие вещества.doc

— 101.50 Кб (Скачать файл)

Гипсовые вяжущие вещества. 

Гипсовыми вяжущими веществами называют материалы, для получения которых  используют сырье, содержащее сернокислый  кальций. Чаще это природные гипс CaSO4-2H2O и ангидрит CaSO4, реже — некоторые  побочные, продукты химической промышленности (фосфогипс, борогипс). 

Производство.

Создавая соответствующие условия  дегидратации двуводного гипса, можно  получить различные гипсовые вяжущие  вещества, которые разделяют на две  группы: низкообжиговые (собственно гипсовые) и высокообжиговые (ангидритовые) — ангидритовый цемент и высокообжиговый гипс.

При нагревании двуводного гипса до 180°С двуводный гипс превращается в  полуводный:

CaSO4- 2Н2О = CaSO4- 0,5H2O + 1,5НаО

а при дальнейшем нагревании до 200 °С полностью обезвоживается, превращаясь  в безводный растворимый ангидрит CaSO4.

Модификации полуводного  и безводного растворимого гипса  значительно отличаются по своим  вяжущим свойствам (см. ниже).

При дальнейшем нагревании до 45О...75О°С  безводный гипс медленно переходит  в нерастворимый ангидрит, не обладающий вяжущими свойствами, но если его размолоть и ввести  некоторые  вещества — катализаторы,  он приобретает способность медленно схватываться и твердеть.

При нагревании до 800...1000 °С нерастворимый  ангидрит частично разлагается на оксид  кальция, сернистый газ и кислород. Полученный продукт, размолотый в порошок, вследствие появления небольшого количества оксида кальция (3...5 %), выполняющего роль катализатора, вновь приобретает свойства схватываться и твердеть.

Термическую обработку природного гипса и помол осуществляют по различным схемам. По одной из схем гипсовый камень измельчают до обжига, по другой — после обжига, а по третьей — помол и обжиг совмещают в одном аппарате (обжиг во взвешенном состоянии).

Для получения гипсовых вяжущих сырье обжигают в печах (вращающихся, шахтных и др.) или в варочных котлах. При обжиге в открытых аппаратах, сообщающихся с атмосферой, вода из сырья удаляется в виде па-ра и гипсовое вяжущее преимущественно состоит из мелких кристаллов р-модификации CaSO4-0,5H2O. При обжиге в герметических аппаратах (котлах-автоклавах), в которых обезвоживание природного гипса происходит в среде насыщенного пара под давлением выше атмосферного или в процессе кипячения в водных растворах некоторых солей при атмосферном давлении с последующей сушкой и измельчением, получают гипс, который состоит в основном из а-модификации CaSO4-0,5H?O в виде крупных и плотных кристаллов, характеризующихся пониженной водопотребностью по сравнению с JJ-полугидратом. Это обусловливает более плотную структуру отвердевшего CaSO4-0,5H2O и более высокую его прочность.

Твердение гипсовых вяжущих проходит по следующей схеме. 

На первом этапе (подготовительном) частицы полуводного гипса, приходя  в соприкосновение с водой, начинают растворяться с поверхности до образования насыщенного раствора. Одновременно начинается гидратация полуводного гипса по реакции

CaSCV 0,5Н2О + 1,5НаО = CaSO4-2H2O

Этот период характеризуется пластичным состоянием теста. 

На втором этапе (коллоидации) наряду с гидратацией растворенного полугидрата и переходом его в двуводный гипс происходит прямое присоединение воды к твердому полуводному гипсу. Это приводит к возникновению двуводного гипса в виде высокодисперсных кристаллических частичек. Так как двуводный гипс обладает значительно меньшей растворимостью (примерно в 5 раз), чем полуводный, то насыщенный раствор по отношению к исходному полуводному гипсу является пересыщенным по отношению к образующемуся двуводному гипсу и тот, выделяясь из раствора, образует коллоидно-дисперсную массу в виде геля (студня), в которой кристаллики двугидрата связаны слабыми ван-дер-ваальсо-выми силами молекулярного сцепления. Этот период характеризуется  загустеваннем  теста   (схватыванием).

На третьем этапе (кристаллизации) образовавшийся неустойчивый гель перекристаллизовывается в более крупные кристаллы, которые срастаются между собой в кристаллические сростки, что сопровождается твердением системы и ростом ее прочности.

Указанные этапы не следуют строго друг за другом, а налагаются один на другой и продолжаются до тех пор, пока весь полуводный гипс не перейдет в двуводный (практически через 20...40 мин после затвердения). К этому времени достигается максимальная прочность системы во влажном состоянии. Дальнейшее увеличение прочности гипсового камня происходит вследствие его высыхания. При этом из водного раствора выделяется частично оставшийся в нем двуводный гипс, упрочняющий контакты между кристаллическими сростками. При полном высыхании рост прочности прекращается. Сушка является необходимой операцией в технологии гипсовых изделий, но проводить ее надо осторожно (при температуре не выше 6О...7О°С), чтобы не допустить дегидратацию образовавшегося двугидрата сульфата кальция.

Свойства гипсовых вяжущих

Свойства низкообжиговых гипсовых вяжущих во многом одинаковы. Главное различие состоит в прочности, что в основном связано с их разной водопотребностью. Для получения теста нормальной густоты гипс |3-модифи-кации требует 50...70 % воды, а а-модификации — 30... 45 %> в то время как по уравнению гидратации полугидрата в двугидрат необходимо всего 18,6 % воды от массы вяжущего вещества. Вследствие значительного количества химически несвязанной воды затвердевший гипс имеет большую пористость — 30...50 %. Пористость меньше при использовании гипса а-модификации.

Стандартом на гипсовые вяжущие, получаемые путем термической обработки гипсового сырья до полугидрата сульфата кальция (ГОСТ 125—79), установлено 12 марок (МПа): Г-2, Г-3, Г-4, Г-5, Г-6, Г-7, Г-10, Г-13, Г-16, Г-19, Г-22, Г-25. При этом минимальный предел прочности при изгибе для каждой марки вяжущего должен соответствовать значению соответственно от 1,2 до 8 МПа.

По тонкости помола, определяемой остатком (в %) при просеивании пробы  на сите с отверстиями размером 0,2 мм, гипсовые вяжущие делятся на три группы:

Гипсовые вяжущие относительно быстро схватываются и твердеют. Различают быстротвердеющий (А), нормальнотвердеющий (Б) и медленно твердеющий (В) гипсы со сроками схватывания соответственно начало — не ранее 2, 6 и 20 мин, конец—не позднее 15, 30 мин (для В — не нормируется). Для замедления схватывания в воду затворения добавляют животный клей или сульфитно-дрожжевую бражку — ЛСТ (0,1...0,3 % от массы гипса). Эти вещества, адсорбируясь на зернах полуводного гипса, уменьшают его растворимость, поэтому процесс схватывания гипсового теста замедляется. При необходимости ускорить схватывание гипса добавляют вещества (0,2...3 % от массы гипса), одни из которых повышают растворимость полуводного гипса (поваренная соль, сульфат натрия и др.), другие (двуводный гипс) образуют центры кристаллизации, вокруг которых быстро закри-сталлизовывается вся масса.

Особенностью полуводного гипса  по сравнению с другими вяжущими является его способность при  твердении увеличиваться в объеме (до 1 %). Так как увеличение объема происходит в еще окончательно не схватившейся массе, то она хорошо уплотняется и заполняет форму. Это позволяет широко применять гипс для отливки художественных изделий сложной формы.

Важнейшими недостатками затвердевших гипсовых вяжущих являются значительные деформации под нагрузкой (ползучесть) и низкая водостойкость. Для повышения водостойкости гипсовых изделий при изготовлении вводят гидрофобные добавки, м

Применение гипсовых вяжущих

Гипсовые вяжущие применяют  для производства гипсовой сухой  штукатурки, перегородочных плит и панелей, архитектурных, звукопоглощающих и других изделий, а также строительных растворов для внутренних частей зданий.

Ангидритовое вяжущее (ангидритовый цемент), предложенное акад. П. П. Будниковым, состоит преимущественно из нерастворимого ангидрита. Его изготовляют обжигом природного гипса при 600...700 °С и последующим помолом обожженного продукта с добавками — активизаторами твердения пли из природного ангидрита без обжига путем его совместного помола с теми же. добавками. В качестве активизаторов твердения используют вещества, отличающиеся щелочным характером (известь, обожженный доломит, основные доменные шлаки и др.), а также некоторые соли (сульфат и бисульфат натрия и др.). 

Высокообжиговый гипс, получаемый обжигом двуводного гипса или ангидрита при 800... 1000 °С, состоит в основном из безводного сернокислого кальция. В нем присутствует небольшое количество оксида кальция (3...5 %), который образуется в результате термического разложения части сульфата кальция при обжиге и выполняет роль катализатора при твердении высокообжигового гипса. Высокообжиговые гипсовые вяжущие в отличие от низкообжиговых медленно схватываются и твердеют (сроки схватывания 0,5...24 ч и более). Предел прочности при сжатии стандартных образцов через 28 сут твердения 5...20 МПа и более.

Высокообжиговые гипсовые вяжущие  вещества применяют для устройства бесшовных полов и подготовки под линолеум, приготовления штукатурных  и кладочных растворов, бетонов, искусственного мрамора. 

 

Портландцемент и его разновидности являются основным вяжущим материалом в современном строительстве. В СССР его производство составляет около 65 % от выпуска всех цементов. 

Портландцемент — продукт тонкого измельчения клинкера, получаемого обжигом до спекания, т. е. частичного плавления сырьевой смеси, обеспечивающей преобладание в нем высокоосновных силикатов кальция (70...80 %). Для регулирования схватывания и некоторых других свойств при помоле клинкера в цемент добавляют небольшое количество гипса (1,5...3,5 %). В соответствии с ГОСТ 10178—85 за таким бездобавочным цементом сохранено название портландцемент (ПЦ-ДО). Ш Сырье и производство.

Для получения доброкачественного портландцемента химический состав клинкера, а следовательно, и состав сырьевой смеси должны быть устойчивы.

Многочисленные исследования и практический опыт показывают, что элементарный химический состав клинкера должен находиться в следующих пределах (% по массе): СаО — 63...66; SiO2 — 21...24; А12О3 — 4...8; Ре2Оз — 2...4, их суммарное количество составляет 95... ...97 %. Следовательно, для производства портландцемента следует применять такие сырьевые материалы, которые содержат много карбоната кальция и алюмосиликатов (известняки, глины, известковые мергели). Чаще используют искусственные сырьевые смеси из известняка или мела и глинистых пород при соотношении между ними в сырьевой шихте примерно 3:1 (% по массе): СаСО3 — 75...78 и глинистого вещества — 22...25. Вместо глины или для частичной ее замены используют также отходы различных производств  (доменные шлаки, нефелиновый     шлам      и т.      п.).       Нефелиновый шлам, получающийся при производстве    глинозема, уже   содержит   25...30 % SiOЈ и 50...55 % СаО; достаточно к нему добавить 15...20 %  известняка, чтобы    получить    сырьевую смесь. При этом производительность   печей   повысится  примерно на 20 %, а расход топлива снизится на 20...25 %. Для обеспечения нужного химического    состава    сырьевой смеси применяют корректирующие добавки, содержащие  недостающие  оксиды.  Например,  количество S1O2 повышают, добавляя в сырьевую смесь трепел, опоку. Добавление колчеданных огарков увеличивает         содержание Fe2O3.

В качестве топлива используют природный  газ, реже мазут и твердое топливо  в виде угольной пыли. Стоимость  топлива составляет до 26 % себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии.

Технология портландцемента в основном сводится к приготовлению сырьевой смеси надлежащего состава, ее обжигу до спекания (получают клинкер) и помолу в тонкий порошок.

Сырьевую смесь приготовляют сухим  или мокрым способом (см. 5.2). В соответствии с этим различают и способы  производства цемента — сухой  и мокрый. В СССР преобладает мокрый способ производства цемента, но все  шире внедряется сухой. Важнейшим преимуществом сухого способа производства является не только снижение расхода теплоты на обжиг в 1,5...2 раза, чем при мокром, но и более высокие удельные съемы в печах сухого способа.

Обжиг сырьевой смеси чаще осуществляют во вращающихся печах, но иногда (при  сухом способе) в шахтных.

Вращающаяся печь (5.2) представляет собой  сварной стальной барабан длиной до 185 м и более, диаметром до 5...7 м, футерованный изнутри огнеупорными материалами. Барабан уложен на роликах  под углом 3...4° к горизонту  и медленно вращается вокруг своей оси. Благодаря этому сырьевая смесь, загруженная в верхнюю часть печи, постепенно перемещается к нижнему концу, куда вдувают топливо, продукты горения которого просасываются навстречу сырьевой смеси и обжигают ее. Характер процессов, протекающих при обжиге сырьевой смеси, приготовленной по сухому и мокрому способам, по существу, одинаков и определяется температурой и временем нагревания материала в печи. Рассмотрим эти процессы.

В зоне сушки поступающая в верхний  конец печи сырьевая смесь встречается с горячими газами и постепенно при повышении температуры с 70 до 200 °С (зона сушки) подсушивается, превращаясь в комья, которые при перекатывании распадаются на более мелкие гранулы. По мере перемещения сырьевой смеси вдоль печи происходит дальнейшее постепенное ее нагревание, сопровождаемое химическими реакциями. 

В зоне подогрева при 200...700 °С сгорают  находящиеся в сырье органические примеси, удаляется химически связанная  вода из глинистых минералов и  образуется безводный каолинит Al2O3-2SiO2. Подготовительные зоны (сушки и подогрева) при мокром способе производства занимают 50...60 % длины печи, при сухом же способе подготовки сырья длина печи сокращается за счет зоны сушки. 

В зоне декарбонизации при температуре 700... s..l 100 °С происходит процесс диссоциации карбонатов кальция и магния на CaO, MgO и СО2, алюмосиликаты глины распадаются на отдельные оксиды SiO2, A12O3 и Fe2O3 с сильно разрыхленной структурой. Термическая диссоциация СаСО3 — это эндотермический процесс, идущий с большим поглощением теплоты (1780 кДж на 1 кг СаСО3), поэтому потребление теплоты в третьей зоне печи наибольшее. В этой же зоне оксид кальция в твердом состоянии вступает в реакцию с продуктами распада глины с образованием низкоосновных силикатов, алюминатов и ферритов кальция (2CaO-SiO2, СаО-АШ3, 2CaO-Fe2O3). 

Информация о работе Гипсовые вяжущие вещества