Автор работы: Пользователь скрыл имя, 05 Ноября 2013 в 21:28, контрольная работа
Разрабатываемый технологический процесс должен быть прогрессивным и обеспечивать повышение производительности труда и качества изделий, сокращение трудовых и материальных затрат на его реализацию, уменьшение вредных воздействий на окружающую среду. Технологический процесс должен соответствовать требованиям экологии и безопасности жизнедеятельности. Разработка перспективных технологических процессов должна быть основана на результатах научно-исследовательских, опытно-технологических и опытно-конструкторских работ, прогнозирование новых методов обработки изделия, анализа опыта других предприятий.
Рентгенодефектоскопия основана на поглощении рентгеновских лучей, которое зависит от плотности среды и атомного номера элементов, образующих материал среды. Наличие таких дефектов, как трещины, раковины и инородные включения, приводит к тому, что проходящие через материал лучи ослабляются в различной степени. Интенсивность лучей регистрируют несколькими методами. Методами фотографии получают снимок детали (материала) на пленке. Визуальный метод основан на наблюдении изображения детали на флуоресцирующем экране.
Радиодефектоскопия, основанная
на проникающих свойствах
При инфракрасной дефектоскопии используются инфракрасные лучи для обнаружения непрозрачных для видимого света включений. Инфракрасное изображение дефекта получают в проходящем, отраженном или собственном излучении исследуемого изделия.
Инфракрасная интроскопия дословно означает тепловое внутривидение и позволяет видеть внутреннюю структуру таких важных для радиоэлектроники материалов, как полупроводники.
Магнитная дефектоскопия
основана на исследовании искажений
магнитного поля, возникающих в местах
дефектов в изделиях из ферромагнитных
материалов. служить магнитный порошок
(закись – окись железа) или его
суспензия в масле с
Термоэлектрическая
Электростатическая
Капиллярная дефектоскопия основана на искусственном повышении свето- и цветоконтрастности дефектов относительно неповрежденного участка. Методы капиллярной дефектоскопии позволяют обнаруживать невооруженным глазом тонкие поверхностные трещины и другие несплошности материала, образующиеся при изготовлении и эксплуатации деталей машин. Может быть применен для контроля качества заготовок и деталей, изготовленных из любых немагнитных материалов: ауетепитных сталей, цветных сплавов, пластмасс, керамики, – кроме материалов, обладающих пористой структурой.
Ультразвуковая дефектоскопия
Ультразвуковая дефектоскопия
основана на использовании упругих
колебаний, главным образом
Ультразвуковому контролю можно подвергать крупногабаритные детали и заготовки, так как глубина проникновения ультразвука в металл может достигать 8–10 м.
К числу основных методов ультразвуковой дефектоскопии относятся: эхометод, теневой, резонансный, велосимметричный (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы).
Эхометод основан на посылке
в изделие коротких импульсов
ультразвуковых колебаний, регистрации
интенсивности и времени
Теневой метод применяют для исследования распределения плотности воздушных потоков, образующихся при обтекании моделей в аэродинамических трубах, используют для проекции на экран изображений (получаемых в виде оптических неоднородностей) в пузырьковых камерах, в телевизионных системах проекции на большой экран и др.
Выводы:
В данной работе мы изучили
технологический процесс
Маршрутный технологический процесс состоит из 12 последовательных операций, с использованием станков: фрезерный-центровальный, токарный, шлифовальный, шевинговальный и т.д.
Был обоснован способ получения заготовки, разработан маршрутный процесс изготовления детали, произведен выбор необходимого оборудования и технологических баз.
Информация о работе Изучение ГОСТов по технологическому процессу