Автор работы: Пользователь скрыл имя, 07 Ноября 2013 в 21:21, реферат
Нефтегазоперерабатывающая промышленность является одной из экономически наиболее значимых составляющих топливно-энергетического комплекса любого государства. Природный газ является дешевым энергетическим и бытовым топливом. Перегонкой нефти получают автомобильные бензины, керосин, реактивное, дизельное и котельное топливо. Из высококипящих фракций нефти производят большой ассортимент смазочных и специальных масел, консистентных смазок. При переработке нефти вырабатывают парафин, сажу для резиновой промышленности, нефтяной кокс, многочисленные марки битумов для дорожного строительства и другие товарные продукты. Нефть и углеводородные газы – универсальное сырье для производства огромного количества химических продуктов. Следовательно, без продуктов переработки нефти и газа, т.е. без энергии, света, тепла, связи, радио, телевидения, вычислительной и космической техники, разнообразных химических материалов, всех видов транспорта и т.д. трудно представить жизнь современного человека.
1 Введение…………………………………………………………………...……2
2 Переработка нефти………………………………………………………...…..4
2.1 Первичная переработка нефти………………………………...……..4
2.2 Вторичная переработка нефти……………………………………..…5
3 Назначение процесса…………………………………………………………..7
4 Технологическая схема………………………………………………….…..10
5 Режимы работы установок………………………………………………….14
6 Химические основы процесса…………………………………...………….18
7 Сырье и продукты каталитического крекинга………………..…………23
7.1 Сырье каталитического крекинга………………………………….23
7.2 Облагораживание сырья каталитического крекинга……………28
7.3 Продукты каталитического крекинга…………………………..….31
8 Катализаторы термического крекинга……………………………..……..36
9 Заключение……………………………………………………………...…….40
10 Список литературы…………………………………………………..……..41
Е-2, Е-3 - гидравлические затворы, направляющие дымовые газы в атмосферу или в котел-утилизатор;
Т-1 - холодильник-конденсатор;
Т-2 - увлажнитель пара;
Т-3 - камера охлаждения пара;
Н-1 - шламовый насос;
В-1, В-2, В-3 - воздуходувки;
I - сырье (вакуумный газойль);
II - катализатор;
III - воздух;
IV - дымовые газы;
V - конденсат;
VI - перегретый пар;
VII - пар высокого давления;
VIII - вода;
IX - топливо;
X - жирный газ;
XI - нестабильный бензин;
XII - легкий газойль;
XIII - тяжелый газойль;
XIV - катализаторный шлам.
Выше описана технологическая схема установки каталитического крекинга с псевдоожиженным слоем катализатора и вертикальным секционированным регенератором (рис.1). Установка рассчитана на переработку дистиллята (350-500 °С) вакуумной перегонки; нефти. Сырье, нагретое в лечи П-1 до 350 °С, вводят в поток регенерированного катализатора перед его входом в реактор Р-1. Полное испарение и частичное превращение сырья происходят еще до поступления взвеси в псевдоожиженный слой, а в этом слое каталитический крекинг завершается. Отработанный катализатор уходит в нижнюю, суженную отпарную секцию-десорбер, где из пор закоксованного катализатора отпариваются летучие углеводороды.
Отпаренный закоксованный катализатор транспортируют в регенератор Р-2. Чтобы поддержать движение, в основание восходящей части линии пневмотранспорта вдувают воздуходувкой В-3 часть воздуха, направляемого в регенератор для сжигания кокса. Снижение концентрации твердой фазы на этом участке обеспечивает устойчивый транспорт отработанного катализатора. Регенерированный катализатор возвращается из регенератора Р-2 в реактор. Пары, образующиеся при контакте сырья с катализатором, снижают концентрацию твердой фазы; в результате обеспечивается движущий импульс в линии регенерированного катализатора.
В связи с переходом на цеолитсодержащие катализаторы и реакторы лифтного типа описываемый реактор также подвергся некоторой реконструкции - снизили уровень псевдоожиженного слоя и совершенствовали устройство для ввода смеси катализатора и сырья.
Пары продуктов крекинга и сопутствующий им водяной пар покидают псевдоожиженный слой реактора при 490-500 °С и ~0,18 МПа, проходят циклонные сепараторы и направляются в ректификационную колонну К-1.
Основная масса катализаторной мелочи отделяется в циклонах и возвращается в псевдоожиженный слой; самые мелкие частицы пыли уносятся в ректификационную колонну и отмываются в ее нижней части циркулирующей флегмой, образуя шлам. Из колонны К-1 выходят два боковых погона. Нижний представляет собой тяжелый каталитический газойль с н. к. = 350°С. Этот продукт можно направить на повторный кре-кинг в смеси со свежим сырьем. Верхний боковой погон - легкий каталитический газойль с пределами выкипания 195-350 °С. Бензин и газ вместе с водяным паром выходят с верха колонны К-1. В конденсаторе-холодильнике Т-1 образуются конденсаты нестабильного бензина и водяного пара, расслаивающиеся в газоводоотделителе Е-1. Нестабильный бензин и равновесный с ним жирный газ направляют в систему газофракционирования (на схеме не показана).
Для сброса катализатора из реактора и регенератора при регу-лярных и аварийных остановках имеется емкость Б-1; для подпитки системы свежим катализатором и для регулирования его уровня в реакторе предусмотрена емкость Б-2.
Газы, выходящие из регенератора при - 600°С, содержат зна-чительные количества оксида углерода и несут большой запас теп-ла. Использование этого тепла, особенно после дожигания оксида углерода, позволяет получить в котле-утилизаторе П-3 значитель ное количество водяного пара при ~4 МПа.
Чтобы обеспечить точность регулировки отвода избыточного тепла из псевдоожиженного слоя в регенераторе Р-2, в змеевики регенератора подают не воду, а насыщенный пар из увлажнителя Т-2. Пар, перегревшийся в первой секции змеевиков, охлаждают, впрыскивая водный конденсат в камеру Т-3, до требуемой темпе-ратуры и подают во вторую секцию, где он вновь нагревается. По выходе из второй секции пар идет в паровую турбину компрессо-ра углеводородного газа, направляемого на газофракционирова-ние.
Для разогрева регенератора при пуске установки имеется топ-ка П-2, где нагревают воздух, направляемый в регенератор. Когда температура катализатора в регенераторе достигает 300 °С, топку П-2 отключают, и пода-ют топливо непосредственно в псевдоожижен-ный слой регенератора, вплоть до выхода на нормальный режим.
Скорость циркуляции катализатора регулируют, изменяя количество воздуха, подаваемого на транспортирование отработанного катализатора. Поскольку на циркуляцию катализатора влияют колебания давления в реакторе Р-1 и в регенераторе Р-2, разность давлений между этими аппаратами поддерживается постоянной при помощи автоматически регулируемой задвижки на дымовой трубе регенератора.
5 Режимы работы установок
Каталитический крекинг происходит, как правило, в паровой фазе в системе без притока и отдачи тепла, поэтому его относят к адиабатическим процессам. При адиабатическом процессе внешняя работа полностью затрачивается на изменение внутренней энергии системы.
В зависимости от характеристик
перерабатываемого сырья и
Каталитический крекинг проводят в следующих условиях:
температура, °С крекинга - 450-525;
регенерации катализатора - 540-680;
давление, ат в реакторе - 0,6-1,4;
в регенераторе - 0,3 - 2,1;
Рассмотрим основные закономерности процесса.
Температура. С повышением температуры увеличивается октановое число бензина, возрастает выход газов С1-С3 и олефинов С4 и выше, снижается выход бензина и кокса, но повышается соотношение бензин: кокс и снижается соотношение выходов легкого и тяжелого газойля.
Давление. При повышении давления увеличивается выход парафиновых углеводородов и бензина, снижается выход газов С1-С3, олефинов и ароматических углеводородов. Выход кокса в условиях промышленного процесса от давления практически не зависит.
Глубина крекинга. Рециркуляция. Глубину превращения (или глубину крекинга) принято оценивать количеством сырья, превращенного в бензин, газ или кокс. При крекинге в одну ступень (однократный крекинг) глубина превращения равна 45-60%. Примерный выход продуктов при однократном каталитическом крекенге керосина - соляровой фракции прямой перегонки нефти приведен ниже (индекс активности катализатора 28-32):
глубина крекинга,% - 50 - 60
выход, вес.% сухой газ (С3 и легче) - 5-6,5 7-8,5
бутан - бутиленовая фракция - 5,5-9 9-10,5
дебутанизированный бензин (к. к. 205 - 210°С) - 31-32, 36-38
газойль - 50 40
кокс - 3 - 4, 5 - 4, 5-6
Когда хотят достигнуть более глубокого превращения, т.е. получить из сырья больше бензина, подвергают крекингу не только исходное сырье, но и образующиеся в процессе газойлевые фракции. На большинстве промышленных установок каталитическому крекингу подвергают именно смесь исходного сырья с газойлем каталитического крекинга или иногда раздельно свежее сырье и газойлевые фракции. Таким образом газойль возвращается в систему для использования его в качестве вторичного сырья - рециркулятор. В зависимости от того, сколько газойля подвергается каталитическому крекингу, глубина крекинга может достигать 80-90%.
Отношение массы рециркулирующего газойля к массе свежего сырья называется коэффициентом рециркуляции; оно изменяется от нуля до 2,3 при крекинге с рециркуляцией. Глубина крекинга возрастает с увеличением коэффициента рециркуляции.
Характерно, что выход жидких углеводородов, включая фракцию С3-С4, увеличивается до глубины крекинга 80%, а затем снижается. Если же выделить фракцию С3 - С4, то сумма получаемых жидких продуктов по мере увеличения глубины крекинга непрерывно снижается, в данном случае до 62,9 объемн.%. По мере увеличения глубины крекинга выход газойля падает, а при 100% -ной глубине крекинга становится равным нулю.
Объемная скорость. Отношение объема сырья, подаваемого в реактор за 1 ч, к объему катализатора, находящегося в зоне крекинга, называется объемной скоростью. Обычно на одну весовую единицу катализатора, находящегося в зоне крекинга, подается от 0,6 до 2,5 вес. ед. сырья в час. Часто объемную скорость выражают в объемных единицах - объем/ (объем*ч) или м3/ (м3*ч) и записывают в виде ч-1
Кратность циркуляции катализатора. В системах каталитического крекинга с циркулирующим пылевидным или микросферичёским катализатором на 1 т поступающего в реактор сырья вводится 7-20 т регенерированного катализатора, а на установках каталитического крекинга, где применяются крупнозернистые катализаторы (частицы диаметром 3 - 6мм), - от 2 до 5 - 7 т в зависимости от конструкции установки. Указанное отношение (7 - 20 т/т) называют весовой кратностью циркуляции катализатора. Иногда это соотношение выражают в объемных единицах, тогда оно называется объемной кратностью циркуляции катализатора.
Следует различать кратность циркуляции катализатора по свежему сырью и по всей загрузке реактора (свежее сырье плюс рециркулят). В последнем случае при одном и том же количестве катализатора кратность циркуляции будет меньше.
Жесткость крекинга. Известно, что снижение объемной скорости так. же как и увеличение, кратности циркуляции катализатора, способствует повышению выхода бензина и глубины крекинга. Влияние этих параметров на глубину крекинга можно выразить отношением кратности циркуляции к объемной скорости. Это отношение называется фактором жесткости крекинга. Фактор жесткости может быть вычислен по свежему сырью реактора и по суммарной загрузке реактора (свежее сырье плюс рециркулирующий газойль).
Эффективность крекинга. Отношение суммарного выхода (в объемных или весовых процентах) дебутанизированного бензина и фракции С4 к глубине крекинга исходного сырья (в объемных или весовых процентах) именуют эффективностью крекинга. Эффективность (коэффициент) обычно равна 0,75 - 0,8, если она была подсчитана на основе весовых процентов.
В результате каталитического крекинга на установках получают до 15 вес % газа, содержащего водород, аммиак и легкие углеводороды, 30 - 55 вес % высокооктанового компонента автомобильного бензина (или 27 - 50 вес % авиационного бензина), 2 - 9 вес % кокса и легкий и тяжелый газойли. Газ после очистки и газофракционирования используется для технологических или бытовых нужд. Компоненты автомобильного (или авиационного) бензина после стабилизации компаундируются с другими компонентами и используются в качестве товарных топлив. Легкий газойль используется как компонент дизельного топлива (при необходимости - после гидроочистки) или, вместе с тяжелым газойлем, как сырье для получения сажи или приготовления сортовых мазутов.
6 Химические основы процесса
При каталитическом крекинге протекают реакции расщепления, алкилирования, изомеризации, ароматизации, полимеризации, гидрогенизации и деалкилирования. Некоторые из них являются первичными, но большинство - вторичными.
Крекинг парафинов. При крекинге парафиновых углеводородов нормального строения доминируют реакции разложения. Продукты крекинга состоят главным образом из парафиновых углеводородов более низкого молекулярного веса и олефинов. Выход олефинов увеличивается с повышением молекулярного веса сырья. Термическая стабильность парафиновых углеводородов понижается с увеличением молекулярного веса. Тяжелые фракции нефтепродуктов являются менее стабильными и крекируются значительно легче, чем легкие фракции. Наиболее часто разрыв молекул происходит в ее средней части.
Механизм каталитического
При крекинге парафиновых углеводородов
нормального строения протекают
и вторичные реакции с
Изопарафиновые углеводороды крекируются легче. Водорода и метана при этом получается больше, чем при крекинге нормальных парафинов, а углеводородов С3 и С4 (газа) - меньше. Фракции С4, С5 и С6 содержат меньше олефинов вследствие того, что насыщение сильно разветвленных молекул непредельных углеводородов достигается легче, чем для неразветвленных.
Крекинг нафтенов. При крекинге нафтенов одновременно может происходить отщепление боковых цепей. На первой стадии нафтеновые углеводороды с длинными алкильными цепями превращаются в алкилнафтеновые или алкилароматические углеводороды со сравнительно короткими боковыми цепями. Короткие алкильные цепи, особенно метильный и этильный радикалы, термически стабильны и в условиях промышленного каталитического крекинга уже не отщепляются.