Автор работы: Пользователь скрыл имя, 02 Ноября 2015 в 14:33, контрольная работа
Стали — железоуглеродистые сплавы, содержащие практически до 1,5 % углерода. Кроме углерода, сталь всегда содержит в небольших количествах постоянные примеси: марганец (до 0,8 %), кремний (до 0,4 %), фосфор (до 0,07 %), серу (до 0,06 %), что связано с особенностями технологии ее выплавки. В технике широко применяют также легированные стали, в состав которых для улучшения качества дополнительно вводят хром, никель и другие элементы. Существует свыше 1500 марок углеродистых и легированных сталей — конструкционных, инструментальных, нержавеющих и т. д.
Электрошлаковый переплав. Способ разработан в Институте электросварки им. Е. О. Патона для переплава стали с целью повышения качества металла. Электрошлаковому переплаву подвергают выплавленный в электродуговой печи и прокатанный на круглые прутки металл. Источником тепла при ЭШП явялется шлаковая ванна, нагреваемая за счет прохождения через нее электрического тока. Электрический ток подводится к переплавляемому электроду 1, погруженному в шлаковую ванн 2, и к поддону 9, установленному внизу в водоохлаждаемой металлической изложнице (кристаллизаторе) 7, в которой находится затравка 8 (рис. 1.18). Выделяющаяся теплота нагревает шлаковую ванну 2 до 1700 °С и более и вызывает оплавление конца электрода. Капли жидкого металла 3 проходят через шлак, собираются, образуя под шлаковым слоем металлическую ванн 4.
Перенос капель металла через шлак, интенсивное перемешивание их со шлаком способствуют их активному взаимодействию, в результате чего происходит удаление из металла неметаллических включений и растворенных газов. Металлическая ванна, непрерывно пополняемая за счет расплавления электрода, под воздействием водоохлаждаемого кристаллизатора постепенно формируется в слиток 6. Кристаллизация металла, последовательная и направленная снизу вверх, происходит за счет теплоотвода через поддон кристаллизатора. Последовательная и направленная кристаллизация способствует удалению из металла неметаллических включений и пузырьков газа, получению плотного однородного слитка. После полного застывания слитка опускают поддон и извлекают его из кристаллизатора.
Рис. 1.18. Схема электрошлакового переплава расходуемого электрода:
а – кристаллизатор; б – включение установки; 1 – расходуемый электрод; 2 – шлаковая ванна; 3 – капли электродного металла; 4 – металлическая ванна; 5 – шлаковый гарнисаж; 6 – слиток; 7 – стенка кристаллизатора; 8 – затравка; 9 - поддон
В результате электрошлакового переплава содержание кислорода в металле снижается в 1,5…2 раза, понижается концентрация серы и соответственно уменьшается в 2…3 раза загрязненность металла неметаллическими включениями, причем они становятся мельче и равномерно распределяются в объеме слитка.
Слиток отличается большой плотностью, однородностью, его поверхность — хороший качеством благодаря наличию шлаковой корочки 5. Все это обусловливает высокие механические и эксплуатационные свойства сталей и сплавов электрошлакового переплава.
Слитки выплавляют круглого, квадратного, прямоугольного сечений массой до 110 т.
Вакуумно-дуговой переплав. Такой переплав применяют для удаления из металла газов и неметаллических включений. Сущность процесса заключается в снижении растворимости газов в стали при снижении давления и устранении взаимодействия ее с огнеупорными материалами футеровки печи, так как процесс ВДП осуществляется в водоохлаждаемых медных изложницах. Для осуществления процесса используют вакуумные дуговые печи с расходуемым электродом (рис. 1.19).
Рис. 1.19. Схема вакуумно-дугового переплава
В зависимости от требований, предъявляемых к металлу, расходуемый электрод может быть получен механической обработкой слитка, выплавленного в электропечах. Расходуемый электрод 3 закрепляют на водоохлаждаемом штоке 2 и помещают в корпус 1 печи и далее в медную водоохлаждаемую изложницу 6. Из корпуса печи вакуум-насосами откачивают воздух до остаточного давления 1,33 Н/м2 (0,00133 кПа). При подаче напряжения между расходуемым электродом-катодом и затравкой-анодом 8, помещенной на дно изложницы, возникает дуговой разряд. Теплотой, выделяющейся в зоне разряда, расплавляется конец электрода; капли 4 жидкого металла, проходя зону дугового разряда, дегазируются, постепенно заполняют изложницу и затвердевают, образуя слиток 7.Дуга горит между расходуемым электродом и ванной 5 жидкого металла, находящейся в верхней части слитка, на протяжении всей плавки. Благодаря сильному охлаждению нижней части слитка и разогреву дугой ванны жидкого металла в верхней его части создаются условия для направленного затвердевания слитка. В результате направленного затвердевания неметаллические включения сосредоточиваются в верхней части слитка, а усадочная раковина в слитке мала. Слитки, полученные в вакуумных дуговых печах, содержат очень небольшое количество газов, неметаллических включений, отличаются высокой равномерностью химического состава, имеют хорошую макроструктуру. Поэтому металл, полученный ВДП, отличается повышенными механическими свойствами и пластичностью. Из слитков ВДП изготовляют ответственные детали турбин, двигателей, авиационных конструкций. Емкость дуговых вакуумных печей — до 50 т.
1.13. Современные внедоменные
способы производства железа (стали)— одно из перспективных
направлений в металлургии. Для передела
в сталь используют около 80 % всего чугуна.
Двухстадийная технология современного
сталеплавильного производства:руда→чугун→сталь
1.13.1. Альтернативные доменному процессы
В развитых странах до 70 % валового национального продукта (ВНП) составляет продукция, содержащая металлы. Причем доля черных металлов среди конструкционных материалов находится в пределах 90…92 %. Именно поэтому металлургия является базовой отраслью промышленности. Такой она останется и в XXI веке. Прогнозы 60…70-х гг. ХХ века о расширении масштабов замены стали пластмассами, алюминием, композитами, керамикой не оправдались. Реально доля замены сталей альтернативными материалами находится в пределах 2…5 %. Поэтому все возрастающее значение будет приобретать способность материала к повторному использованию - рециклированию, исключающему загрязнение и загромождение окружающей среды. По всем этим параметрам сталь превосходит альтернативные материалы. Количество рециклирования пластмасс не достигает и 10 %, а для таких новых материалов, как композиты, керамика, стекловолокно, пока вообще равно нулю.
Многовековое существование металлургии отягощает ее современный облик устаревшими технологиями, не учитывающими новые экологические требования по защите окружающей среды. Сталь производят на интегрированных заводах из чугуна, используя капиталоемкие кислородные конверторы или мартеновские печи для удаления углерода. В то же время чугун производят из сырья, не содержащего углерода, но при выплавке в домне по условиям технологии происходит его науглероживание.
Производственный цикл выпуска металлопродукции подразделяется на две стадии:
1) получение жидкого металла;
2) обработка стальных заготовок
в твердом состоянии при
Пластическая деформация металла на 2-й стадии меньше всего связана с загрязнением окружающей среды и обеспечивается в настоящее время все более совершенным оборудованием.
Более консервативной является стадия получения жидкого металла, основным звеном которой является доменная печь, в которой используется кокс. Коксохимическое производство - один из основных источников загрязнения окружающей среды. Доменная печь требует специальной подготовки к плавке железорудного сырья: измельчения, обогащения, окускования в виде агломерата и окатышей. Все это вынуждает иметь горно-обогатительные комбинаты или производства. Конструкция доменной печи не позволяет осуществлять непрерывный выпуск из нее металла, хотя сам процесс его выплавки происходит непрерывно. Это не благоприятствует разработке непрерывных сталеплавильных процессов.
В последние десятилетия в мировой металлургии наряду с действующими металлургическими интегрированными заводами (заводами с полным циклом) начали строить мини-заводы, использующие для выплавки стали металлолом. Эту тенденцию породили два обстоятельства.
1. Накопление запасов
2. Развитие непрерывной разливки стали.
В результате появилась возможность создавать небольшие заводы, используя дуговые электропечи, переплавляющие в сталь накопленные ресурсы металлолома. При этом отпадает необходимость иметь в производственном цикле добычу железорудного сырья, его обогащение и окускование, производство кокса. Инвестиционные затраты по такой схеме резко сокращаются, а себестоимость стали конкурентоспособна (с учетом экономии на транспортных расходах) со сталью интегрированных заводов. Это позволяет выходить на рынок металлопродукции сравнительно небольшим частным фирмам, производящим ограниченный сортамент металлопродукции.
Существуют методы прямого восстановления железа природным газом в шахтных печах или углем во вращающихся печах, скорость протекания которых ограничена процессом диффузии. Переплав полученного сырья в сталь происходит в дуговых электропечах. Это требует иметь минимум примесей, а запасы железных руд в мире, удовлетворяющих этим требованиям, ограничены. Все это накладывает ограничения на использование прямого восстановления для массового производства сталей.
В мировой металлургии были неоднократные попытки получения жидкого металла без использования кокса, методом жидкофазного восстановления с использованием энергетического угля в качестве восстановителя.
Такая попытка была осуществлена в СССР В. П. Реминым в 1949 г. Работы были засекречены. Опыты на дуговой электропечи прошли неудачно, хотя сам процесс жидкофазного восстановления железа из рудного расплава происходил. Не удалось разработать приемлемую технологию и построить соответствующий агрегат в виде так называемой глетчерной печи.
В 60-е гг. была неудачная попытка осуществить жидкофазный процесс восстановления железа под названием "Доред" в наклонном вращающемся конверторе в Швеции. В 70-х гг. в Швеции предложен жидкофазный процесс и агрегат для его осуществления. Однако и эта разработка не дошла до промышленной технологии.
После этого в Швеции были созданы опытные агрегаты процессов "Элред" и "Инред", в которых восстановление осуществлялось в две стадии. Первая из них в "Элреде" осуществлялась в реакторе с кипящим слоем, а в "Инреде" - в камере взвешенной плавки. В последней стадии в обоих случаях использовалась электропечь. До промышленного освоения эти процессы доведены не были. Процессы жидкофазного восстановления железа с использованием в качестве реакционной зоны ванны жидкого чугуна разрабатывались также в ФРГ и Японии.
В конце 70-х гг. в ФРГ был разработан процесс "Корекс", и в 1982 г. начала работать демонстрационная установка. В разработке принимала участие австрийская фирма "Фёст Альпине", которая в дальнейшем возглавила развитие этого процесса в мире. В 1989 г. в ЮАР фирма "Искор" ввела в эксплуатацию взамен доменной печи промышленную установку “Корекс” с годовой производительностью 300 тыс. тонн жидкого чугуна. Фактически установка "Корекс" представляет собой разнесенные в пространстве шахту и горн доменной печи (рис. 1.20). Они связаны между собой передачей шихты из шахтной печи в реактор-газификатор (горн) и газа из реактора в шахтную печь. Благодаря такой конструкции удалось заменить кокс энергетическим углем. Впервые в промышленном масштабе был реализован процесс выплавки чугуна бездоменным способом с использованием угля вместо кокса.
В установке "Корекс" процесс восстановления осуществляется в две стадии в разных агрегатах. В шахтной печи 3 идет твердофазное восстановление газом из реактора 1, в котором происходит газификация угля с помощью кислорода. Доля этого восстановления в процессе находится в пределах 90%. Работа шахтной печи, как и доменной, требует окускованного железорудного сырья с высоким содержанием железа (окатыши, богатая кусковая руда), имеющего заданный гранулометрический состав. В результате, в процессе "Корекс" имеются ограничения по мощности установки.
Сырье из шахтной печи с помощью специальных устройств передается в реактор 1, где происходит его расплавление и довосстановление с получением жидкого чугуна, аналогичного доменному чугуну. Следовательно, в процессе "Корекс" собственно жидкофазное восстановление в реакторе составляет не более 10%. Такие комбинированные твердофазные и жидкофазные процессы восстановления железа, в отличие от прямого восстановления (только твердофазного), получили название восстановительной плавки или плавильно-восстановительных процессов.
Рис. 1.20. Технологическая схема процесса
КОРЕКС: 1-реактор-газификатор; 2- угол
Процессы в реакторе установки "Корекс" предъявляют свои требования к технологии. Наряду с углем, в реактор периодически загружают кокс, расход которого может достигать 15 % от расхода угля. Газы, выходящие из реактора, нельзя непосредственно передавать в шахтную печь. Требуется их охлаждение до температуры восстановления и сухая очистка от пыли в специальных циклонах перед шахтной печью. Конструктивные параметры установки "Корекс" требуют, в отличие от доменной печи, иметь две системы шихтоподачи (отдельно для железорудной шихты и отдельно для угля), дополнительую сухую систему газоочистки от пыли в циклонах, шнековую систему передачи высокотемпературного сырья из шахтной печи в реактор.
Информация о работе Контрольная работа по «Организация и технология отрасли»