Контрольная работа по «Теории конструкционных материалов»

Автор работы: Пользователь скрыл имя, 22 Мая 2013 в 12:46, контрольная работа

Описание работы

1. Железо и сплавы на его основе.
2. Полимерные материалы в технике
3. Законы механики в технике.

Файлы: 1 файл

Контрольная работа по ТКМ.doc

— 106.00 Кб (Скачать файл)

Оптические системы  используются во всех сферах научной  деятельности, от биологии до физики. Поэтому, можно сказать , что сфера применения оптических систем в науке и технике – безгранична.

 

20. Сплавы s, p, d и f –металлов, области их применения в технике.

 

 

 Большие энергии магнитной анизотропии, свойственные редкоземельным веществам, играют решающую роль при создании материалов для постоянных магнитов. Соединения SmCo5 , NdCo5 благодаря высоким К l и Is при соответствующей технологической обработке позволяют получить рекордные для подобных материалов коэрцитивные силы (до 104 Э) и огромные магнитные энергии для постоянных магнитов (произведение НcIs ~ 106 Гс Э), что на два порядка больше, чем соответствующие энергии для магнитов из металлов группы Fe. Это, в свою очередь, дает возможность изготовлять магниты в несколько десятков раз сильнее, чем магниты на основе металлов группы Fe; они получили широкое применение там, где требуется создавать сильные магнитные поля при минимальном весе и габаритах: магниты для миниатюрных электромоторов, в магнитофокусирующих системах электронных микроскопов, в мощных электронных лампах магнетронах.

. Редкоземельные атомы  имеют большие величины Мат  . Причина - отсутствие "замораживания"  орбитального момента в кристаллах, а также то, что в f-оболочках,  ответственных в этих атомах  за магнетизм, в создании Мат  могут участвовать семь спиновых магнитных моментов, тогда как в атомах группы Fe таких моментов пять. Благодаря этому обстоятельству многие редкоземельные металлы (Gd, Dy , Tb, Er , Eu) имеют величины Is (при 0 К) более высокие, чем Fe и Fe-Co-сплавы. 

Материалы для создания эффективных запоминающих устройств ЭВМ. Возникновение доменов в магнитоупорядоченных веществах есть результат конкуренции энергии обменного и магнитного взаимодействий. Обменные силы стремятся удержать магнитные моменты атомов в параллельном положении, а магнитные - в антипараллельном. В результате этого ферро- и ферримагнетики разбиваются на малые области с определенными направлениями намагниченности.  Домены при наложении локальных неоднородных магнитных полей, например, создаваемых маленькими магнитиками или маленькими проволочными витками с током, могут быстро в этой пластинке передвигаться. Это явление в настоящее время используется для создания нового типа элементов памяти в электронов  в случае редкоземельных материалов высокого магнитного насыщения, необходимо принять меры к снижению "вредного" влияния огромной магнитной анизотропии, т.е. уменьшить величину поля насыщения Нs . После решения этой задачи редкоземельные материалы будут перспективны для создания различных технических устройств, например для получения ультразвука большой мощности, конструирования приборов, позволяющих с помощью магнитного поля управлять различными контактными и автоматическими устройствами. вычислительных машинах. 

Редкоземельные ортоферриты  и ферриты-гранаты, а также соединения EuO, EuSe являются прозрачными магнитоупорядоченными веществами в видимой и в ближней инфракрасной областях спектра. Кроме того, редкоземельные ортоферриты имеют гигантские величины вращения плоскости поляризации света в магнитном поле (эффект Фарадея). Эти вещества - перспективные материалы для модуляторов света и других оптических устройств, в частности для управления лазерным лучом с помощью переменного магнитного поля.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Информация о работе Контрольная работа по «Теории конструкционных материалов»