Автор работы: Пользователь скрыл имя, 27 Декабря 2013 в 13:40, курсовая работа
Корпуса предназначены для защиты элементов и компонентов ИС от климати¬ческих (влага, газы) и механических воздействий и светового облучения. Корпус обес¬печивает эффективный отвод тепла от тепловыделяющих элементов и компонентов микросхемы. Металлический корпус осуществляет также экранирование от воздейст¬вия электростатических, а в некоторых случаях и магнитных полей. Корпус имеет вы¬воды, с помощью которых микросхему монтируют на печатную плату. Контактные площадки платы ИС электрически соединены с выводами корпуса.
Корпуса предназначены для защиты элементов и компонентов ИС от климатических (влага, газы) и механических воздействий и светового облучения. Корпус обеспечивает эффективный отвод тепла от тепловыделяющих элементов и компонентов микросхемы. Металлический корпус осуществляет также экранирование от воздействия электростатических, а в некоторых случаях и магнитных полей. Корпус имеет выводы, с помощью которых микросхему монтируют на печатную плату. Контактные площадки платы ИС электрически соединены с выводами корпуса.
В зависимости от материалов корпуса делятся на следующие типы: металлостеклянные, стеклянные, керамические, металлополимерные, пластмассовые, полимерные.
Рис. 1.1. Схемы конструкций корпусов микросхем: а, б, в - металлостеклянных; г - стеклянного; д - керамического; е, ж - металлополимерных; з - пластмассового; и, к - полимерных
В металлостеклянных корпусах армирование и крышку выполняют из металла, а выводы изолируют от основания стеклом
Металлокерамические корпуса состоят из керамического основания с выводами и металлической крышки. Так как из-за высокой температуры спекания керамики армировать основание металлическими выводами невозможно, их в специальной технологической рамке впаивают в него стеклом. Кроме того, к бортику керамического основания стеклом припаивают металлическую рамку, к которой сваркой или пайкой присоединяют металлическую крышку. Так как рамка и крышка должны при пайке хорошо смачиваться припоем на основе олова, их предварительно покрывают тонким слоем никеля, меди или золота. Выводы можно также присоединять к керамическому основанию с помощью проводящих паст.
Стеклянные корпуса более
В керамических корпусах как крышка, так и основание выполнены из керамики. Это позволяет монтировать внешние выводы и выполнять герметизацию пайкой стеклом без рамки, что упрощает конструкцию.
Во избежание термических
В пластмассовых корпусах крышки приклеивают к основаниям специальными клеями. Этот вариант герметизации применяют только при изготовлении малоответственных ИМС, так как он не обеспечивает вакуумношотную защиту.
К корпусу ИС предъявляется ряд требований, обусловленных ее назначением и электрическими параметрами, особенностями сборки как самих ИС, так и сборки ИС на печатных платах, назначением, особенностями конструкции и условиями эксплуатации аппаратуры, в которой используются ИС. К этим требованиям относятся: герметичность конструкции, высокая надежность, малые габариты, эффективный теплоотвод, малые паразитные электрические параметры выводов (активное сопротивление, индуктивность и емкость), высокая механическая прочность, простота монтажа на печатных платах, легкость съема с печатной платы при необходимости ремонта, низкая стоимость, защита от светового облучения. К корпусу могут предъявляться требования, обусловленные специфическим назначением микросхемы: электростатическое и (или) магнитное экранирование, обеспечение возможности воздействия света при обработке оптической информации или при стирании информация в программируемых (полупостоянных) запоминающих устройствах (ПП3У) ультрафиолетовым облучением и др.
Основные требования, предъявляемые к корпусу, следующие:
1)механическая прочность и
микросхемы от воздействия окружающей
среды и механических повреждений.
2) высокая теплопроводность.
3) возможность надежного электрического соединения контактных площадок микросхем с выводами корпуса;
4) возможность надежного крепления микросхемы при монтаже в аппаратуре;
5)простота изготовления и
6)низкая стоимость.
Первые два требования обычно находятся в противоречии с двумя последними: пока не разработаны простые и дешевые корпуса, способные надежно защищать схему в тяжелых условиях эксплуатации. Испытания показывают, что интенсивность отказав ИС в трудоемких и дорогостоящих керамических корпусах в 3 -10 раз ниже, чем в самых дешевых полимерных корпусах. Высокая интенсивность отказов микросхем в полимерных корпусах объясняется их низкой влагостойкостью. Молекулы воды, размеры которых порядка 3А, проникают внутрь корпуса не только по границам раздела корпус - вывод, но и через толщу полимера.
Обеспечение герметичности корпуса. Элементы и компоненты ИС, предназначенных для работы в условиях повышенной влажности и в атмосфере различных газовых сред, следует помещать в корпуса, обеспечивающие полную герметизацию. Герметичность корпуса достигается применением непроницаемых для влаги и газов материалов и вакуумплотным соединением этих материалов.
В конструкциях корпусов широко используются соединения металлов с металлами, стеклом, керамикой и полимерами, керамики с керамикой и стеклом, стекла со стеклом и др. Высокотемпературные стекла и керамику обычно соединяют с помощью промежуточного слоя легкоплавкого стекла. Определенные трудности возникают при образовании вакуумплотных соединений металлов с керамикой и стеклом. Они обусловлены различными ТКЛР и коэффициентами теплопроводности. Дело в том, что при изготовлении корпуса, сборке микросхемы, эксплуатации детали конструкции подвергаются большим перепадам температуры. Из-за разницы ТКЛР и коэффициентов теплопроводности (разная скорость нагрева деталей) в элементах конструкции возникают большие механические напряжения, приводящие к растрескиванию соединений и нарушению герметичности. Опыт показывает, что разница ТКЛР соединяемых материалов должна составлять 1•10-6°С-1. ТКЛР материалов, применяемых при изготовлении герметичных корпусов, указаны в табл. 1.
Таблица 1 Параметры материалов, применяемых для изготовления корпусов
Материал |
Состав, % |
ТКЛР, 10-6°С-1 |
Коэффициент теплопроводности, Вт/(м * °С) |
Алюминиевая керамика |
94.. .96А12О3, 6.. .4MgOn Si02 |
6,4... 7,9 |
19,6 |
Бериллиевая керамика |
97.. .99 BeO |
7,0 |
208 |
Боросиликатное стекло |
— |
4,6 |
1,1 |
Припайное стекло |
58РbO, 12Ва2О3, 20SiO2, 8ZnO, 2 - прочие окислы |
4,0... 12,0 |
— |
Ковар |
18Co,28Ni, 54Fe |
4,7...5,5 |
16,7 |
Керамвар |
25Co, 27Ni, 48Fe |
8,1 |
— |
Припой |
61 Sn, 39Pb |
21,5 |
— |
Пластмассы |
— |
20...200 |
0,3.. .2,0 |
Для согласования ТКЛР металла со
стеклом или керамикой
Для образования герметичных
В зависимости от конструкции корпуса в практике производства находят применение следующие способы герметизации: холодная сварка давлением, электроконтактная конденсаторная сварка, пайка, заливка компаундами, склеивание, опрессовка компаундами.
В зависимости от применяемых материалов и конструктивных особенностей микросхемы используют следующие методы соединений: