Автор работы: Пользователь скрыл имя, 17 Ноября 2013 в 16:39, лекция
Лекция№1 Состояние невозобновляемых ресурсов и перспективы развития нетрадиционных и возобновляемых источников.
Цель лекции. Оценить состояние невозобновляемых ресурсов и перспективы развития нетрадиционных и возобновляемых источников энергии(НВИЭ). Положительные и отрицательные свойстваНВИЭ. Классификация НВИЭ. Степень распространения различных видов возобновляемой энергии.
Значительное развитие получило направление, связанное с использованием низкопотенциального тепла окружающей среды (воды, грунта, воздуха) с помощью теплонасосных установок (ТНУ). В ТНУ при расходе единицы электрической энергии производится 3-4 эквивалентные единицы тепловой энергии, следовательно, их применение в несколько раз выгоднее, чем прямой электрический нагрев. Они успешно конкурируют и с топливными установками.
Не менее интенсивно
развивается использование
В последние годы наблюдается возрождение интереса к созданию и использованию малых ГЭС. Они получают во многих странах все большее распространение на новой, более высокой технической основе, связанной, в частности, с полной автоматизацией их работы при дистанционном управлении.
Гораздо меньше развито
практическое применение приливной
энергии. В мире существует только одна
крупная приливная
Таково в настоящее
время положение с
РоссияВ 60-70-е годы в СССР проводились НИОКР и предпринимались практические шаги по использованию НВИЭ. Еще в 1967 г. на Камчатке была создана первая в стране Паужетская ГеоТЭС мощностью 5 МВт, доведенная впоследствии до мощности 11 МВт. В 1968 г. появилась экспериментальная Кислогубская ПЭС мощностью 0,4 МВт, на строительстве которой был впервые использован отечественный прогрессивный метод наплавного строительства плотины. В восьмидесятые годы в Крыму были построены первая экспериментальная солнечная электростанция (СЭС-5) мощностью 5 МВт с термодинамическим циклом преобразования энергии, а также экспериментальный комплекс сооружений с солнечным тепло- и хладоснабжением. В 60-70-е годы появились также фотоэлектрические установки автономного электроснабжения. К концу 80-х годов в бывшем СССР в эксплуатации находились солнечные установки горячего водоснабжения с общей площадью около 150 тыс. м2, а производство солнечных коллекторов доходило до 80 тыс. м2 в год.
Распад СССР, переход России на рыночные основы хозяйственной жизни и существенные экономические осложнения, возникшие в 90-е годы, не могли не сказаться и в сфере использования НВИЭ. Однако ситуация здесь хотя и оставляет желать лучшего, но отнюдь не безнадежна. Удалось сохранить, хотя и на минимальном уровне, имевшийся научно-технический потенциал, не потерять, а в некоторых случаях даже увеличить промышленные мощности по производству оборудования. Так, Калужский турбинный завод освоил выпуск блок-модульных ГеоТЭС мощностью 4 и 20 МВт. Три таких блока по 4 МВт смонтированы на Верхне-Мутновской ГеоТЭС на Камчатке. Следующая на очереди - Мутновская ГеоТЭС мощностью 40-50 МВт - будет создана в ближайшие годы. Заметим, что месторождения парогидротерм имеются в России только на Камчатке и Курилах, поэтому геотермальная энергетика не может играть значительную роль в масштабах страны в целом, но для указанных районов, которые периодически оказываются на грани выживания в ожидании очередного танкера с топливом, геотермальная энергетика способна радикально решить проблему энергообеспечения.
В свое время в бывшем
СССР широкое распространение
В области ветроэнергетики созданы образцы отечественных ВЭУ мощностью 250 и 1000 кВт, находящиеся в опытной эксплуатации. Налаживается сотрудничество с зарубежными организациями и фирмами, имеющими большой опыт в этой области.
В России выпускаются солнечные тепловые коллекторы, фотоэлектрические преобразователи и модули на их основе, а также довольно обширная номенклатура теплонасосного оборудования и установок по использованию энергии биомассы. Однако в целом объем производства оборудования для использования НВИЭ невелик, и его рост сдерживается отсутствием платежеспособного спроса. Даже заведомо выгодные проекты в области НВИЭ сталкиваются со значительными трудностями на стадии инвестирования.
Что касается перспектив
приливной энергетики в России, то
следует отметить, что в силу природных
условий проектируемые ПЭС
Положительным фактором является начавшееся в России создание законодательной базы использования НВИЭ. Так, Законом "Об энергосбережении" (1996 г.) установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон "О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии". Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ.
В целом очевидно, что в России тормозом развития нетрадиционной энергетики, как, впрочем, и многих других направлений, является хронически неудовлетворительное состояние экономики. Особенную тревогу вызывает сокращение объемов НИОКР в сфере НВИЭ из-за резкого снижения их финансирования. Если и раньше, в бывшем СССР, эти расходы были на порядок меньше, чем во многих развитых странах, то теперь они сократились, по крайней мере, еще на порядок. Недостаточный объем НИОКР не способен обеспечить не только развитие, но и поддержание имеющегося научно-технического уровня в данной сфере.
Тем не менее, не хочется заканчивать на минорной ноте. В России на сегодня есть все предпосылки развития НВИЭ. С выходом из кризисного экономического состояния, которое не может быть вечным, станет возможным развитие многочисленных областей промышленной, научно-технической и иной деятельности, в том числе и альтернативной энергетики. В мире рост применения этих источников энергии необратим. Россия в этом отношении исключением не является.
В заключение обратимся к известной истине, которая гласит, что все новое - это хорошо забытое старое. Вспомним, что каких-нибудь 200-300 лет назад человечество использовало исключительно возобновляемые источники энергии: растительное топливо, энергию ветра (ветряные мельницы, парус), водных потоков (водяные колеса) да мускульную силу животных. Вспомним также, насколько благополучной была в то время экологическая обстановка. Теперь мы в определенном смысле возвращаемся к истокам, но на новом витке, вооруженные принципиально новой и во много раз более мощной и эффективной техникой.
Лекция№2 ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ
Цель лекцииОзнакомиться с источниками тепла в недрах Земли, рассмотретьтехнологии прямого использования геотермальных ресурсов в теплоснабжении. Изучить принципиальные схемы геотермального теплоснабжения. Оценить возможности использования геотермальной энергии для выработки электроэнергии
1.1. Источники тепла в недрах Земли
1.1.1. Источники тепла
Земля обладает тепловой энергией внешнего (экзогенного) и внутреннего (эндогенного) происхождения. Основными источниками внутренней тепловой энергии являются:
Радиоактивные элементы в земной коре составляют миллионные
доли грамма на грамм породы. Однако за время существования нашей планеты образовавшегося тепла оказалось достаточно для разогрева внутренних слоев Земли, обусловившего развитие таких процессов как вулканизм, метаморфизм, землетрясения, тепловое излучение и др.
Формирование тепла Земли тесным образом связано с историей происхождения нашей планеты. Согласно новейшей гипотезе (О.Ю. Шмидт и др.), образование планет, и в том числе Земли, произошло в результате сгущения протопланетного облака пыли, вращающегося вокруг Солнца. Первоначальное вещество планет, находящееся в холодном состоянии, под влиянием сгущения вещества планеты и внутреннего тепла от радиоактивного распада элементов стало постепенно разогреваться, что вызвало впоследствии дифференциацию вещества и образование оболочек Земли. Образование из первичного холодного вещества современных оболочек Земли происходило по мере его зонного плавления. Возникающие при этом сложные физико-химические процессы приводили к тому, что легкоплавкие вещества поднимались из глубин Земли к ее поверхности, а тяжелые компоненты опускались к ядру. В процессе зонной плавки происходило расслоение нашей планеты на определенные оболочки, а также высвобождение огромной энергии. По мнению академика А.П. Виноградова, именно в результате зонной плавки вещества планеты, происходящей под влиянием энергии радиоактивного распада, образовались оболочки Земли: атмосфера, гидросфера и твердая оболочка.
Кроме тепла, поступающего из недр, земная поверхность получает энергию излучения Солнца в течение всего года. Температура самых верхних слоев земной коры зависит от поступления солнечного тепла. Суточные изменения температуры распространяются на глубину не более 1—2 м. До глубины 20—25 м температура слоев сезонно изменяется. На этой глубине находится пояс Постоянной годовой температуры (нейтральный слой), равной средней годовой температуре воздуха на поверхности Земли. Верхняя часть земной коры, располагающаяся выше нейтрального слоя и испытывающая влияние солнечного тепла, получила название гелиотермической зоны.
Нейтральный слой в разных районах земной поверхности располагается на различных глубинах. Последнее зависит от амплитуды температур на поверхности и теплопроводности горных пород: чем резче колебания температур и выше теплопроводность горных пород, тем глубже находится нейтральный слой. Например, температура нейтрального слоя Москвы и зафиксированного на глубине 20 м составляет 4,2 °С.
Ниже нейтрального слоя находится геотермическая зона, для которой свойственно тепло, генерируемое Землей. Под геотермальной энергией понимают физическое тепло глубинных слоев Земли, имеющих температуру, превышающую температуру воздуха на поверхности. В качестве носителей этой энергии могут быть как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Среднее значение теплового потока, поступающего из недр к поверхности,составляет примерно 0,03Вт/м2
1.2. Технология добычи и использования геотермальной энергии
1.2.1. Состояние и перспективы развития геотермальнойэнергетики
Геотермальные ресурсы представляют собой практически неисчерпаемый, возобновляемый и экологически чистый источник энергии, который будет играть существенную роль в энергетике будущего.
Рост цен на органическое топливо существенно повышает конкурентоспособность энергетических технологий на основе ВИЭ, особенно геотермальной энергетики. Мировой потенциал изученных геотермальных ресурсов составляет 0,2ТВт электрической и 4,4ТВт тепловой мощности. Примерно 70% этого потенциала приходится на месторождения с температурой флюида менее 130°С.
В настоящее время используется около 3,5 % мирового геотермального потенциала для выработки электроэнергии и только 0,2% — для получения тепла. Последние годы характеризуются резким увеличением объемов и расширением областей использования геотермальных ресурсов. В энергетическом балансе ряда стран геотермальные энергетические технологии становятся доминирующими, а доля геотермальной энергетики в мировом энергетическом балансе неуклонно растет. В зависимости от температуры геотермальные ресурсы широко используются в электроэнергетике и теплофикации, промышленности, сельском хозяйстве, бальнеологии и других областях (табл. 1.10).
Информация о работе Лекция по «Нетрадиционным и возобновляемым источникам энергии»