Автор работы: Пользователь скрыл имя, 18 Марта 2013 в 00:05, реферат
В свою очередь процессы дробления в зависимости от крупности исходного куска или крупности промежуточного продукта подразделяются на крупное, среднее и мелкое дробление. При дроблении получить материал высокой степени измельчения невозможно, поэтому в ряде случаев приходится процесс дробления производить в несколько стадий, в двух-трех последовательно установленных машинах. При помоле различают стадии грубого, тонкого и сверхтонкого помола.
Конусные дробилки являются высокопроизводительными машинами при переработке различных горных пород на всех стадиях дробления. В зависимости от назначения разделяют конусные дробилки для крупного (ККД), среднего (КСД) и мелкого (КМД) дробления.
Дробилки ККД характеризуются шириной приемного отверстия и в зависимости от типоразмера могут принимать куски горной породы размером 400-1200 мм, имеют выходную щель 75-300 мм и производительность 150-2600 м3/ч.
Отечественная промышленность
выпускает следующий ряд дробил
На рис. 6 показана конусная дробилка ККД, камера дробления которой образована двумя коническими поверхностями, направлен ными вершинами в противоположные стороны: подвижного конуса вверх, неподвижного вниз. По этой схеме достигается большое расстояние между дробящими конусами вверху у загрузочного отверстия при необходимом угле захвата и тем самым обеспечивается прием и дробление крупных кусков материала. Такие дробилки час то называют длинноконусными дробилками или с крутым конусом. На массивную станину дробилки 1 крепится корпус, состоящий из двух частей: нижней 2 и верхней 3, соединенных болтами. Внутренние поверхности корпуса футерованы сменными плитами 4 из высокомарганцовистой стали, образующими дробящую поверхность неподвижного конуса.
Рис. 6. Конусная дробилка для крупного дробления
К фланцу верхней части корпуса прикреплена траверса 5, лапы которой защищены от износа сменными плитами 6. В средней части траверсы расположен узел подвески вала подвижного конуса, защищенный сверху колпаком 7.
На главный вал дробилки 8 жестко насажен подвижный конус 9, футерованный сменным дробящим конусом 10 из высокомарганцовистой стали, поверхность которого образует дробящую поверхность подвижного конуса.
В центре нижней части станины расположен стакан эксцентрика 15, в который вставлена эксцентриковая втулка 11, ось цилиндрической наружной поверхности которой совпадает с вертикальной осью дробилки. Втулка имеет наклонную цилиндрическую расточку, эксцентричную относительно вертикальной оси дробилки. В эту расточку вставляется нижний конец вала подвижного конуса, верхний конец которого шарнирно закреплен в узле подвески.
К эксцентриковой втулке прикреплена коническая шестерня 12, находящаяся в зацеплении с конической шестерней приводного вала 13, соединенного через муфту с приводным шкивом 14.
Эксцентриковый узел является наиболее напряженным узлом дробилки, воспринимающим значительные нагрузки. Для обеспечения нормальных условий трения скольжения в кинематических парах вал подвижного конуса — эксцентриковая втулка и эксцентриковая втулка — стакан эксцентрика внутреннюю наклонную расточку и наружную поверхность эксцентриковой втулки заливают баббитом или же устанавливают бронзовые или биметаллические вкладыши.
При вращении эксцентриковой втулки ось вала подвижного конуса описывает коническую поверхность с вершиной в точке подвеса. Угол гирации для дробилок ККД составляет около 30 мин.
Таким образом, при заданном эксцентриситете радиус вращения оси подвижного конуса зависит от расстояния до точки подвеса, т. е. от высоты камеры дробления, и чем ближе к точке подвеса, тем меньше этот радиус, а следовательно, и ход сжатия подвижного конуса. На отечественных дробилках ККД в зоне загрузочного отверстия радиус конуса вращения равен приблизительно 5 мм, т. е. полный размах составляет около 10 мм. В зоне выходной щели радиус равен примерно 30 мм.
Рис. 7. Узел подвески подвижного конуса
На рис. 7 показан узел подвески дробилки ККД. В центральной расточке траверсы установлены неподвижная втулка 6 и плоская опорная шайба 5. Для компенсации зазоров в эксцентриковом узле и возможной несоосности опор конусная втулка имеет несколько больший угол конусности, чем угол гирации. Конусная втулка 4 прикреплена к концу вала подвижного конуса при помощи обоймы 3 и гайки 2. Гайка выполнена разрезной для исключения произвольного самоотворачивания и сопрягается с обоймой по конической посадке и дополнительно фиксируется шпонкой. В свою очередь, обойма связана с конусной втулкой шиповым соединением. Такая конструкция деталей подвески исключает проворачивание конусной втулки по шейке вала и тем самым предотвращает изнашивание шейки. От пыли и ударов загружаемой в дробилку породы узел подвески надежно защищен массивным колпаком 1.
При навинчивании или вывинчивании гайки 2 узел подвижного конуса поднимается или опускается и тем самым осуществляется регулирование выходной щели дробилки.
При работе дробилки конусная втулка 4 своей торцовой частью обкатывается по опорной шайбе 5, а конической поверхностью по втулке 6. Так как вал подвижного конуса вращается также вокруг собственной оси, то в узле подвески втулка 4 проскальзывает по шайбе 5 и втулке 6.
Детали конической подвески испытывают значительные нагрузки, вызывающие большие контактные напряжения, и работают в режиме полусухого трения. Учитывая весьма напряженные условия работы узла подвески, к изготовлению его деталей предъявляют особые требования. Детали подвески изготовляют из подшипниковой стали; они имеют высокую чистоту обработки поверхности. Твердость рабочих поверхностей сопрягаемых деталей должна быть в пределах 47-52 и 53-58 единиц по Роквеллу. На наиболее мощных дробилках ККД с шириной приемного отверстия 1200 мм и более применяют двухдвигательный (двусторонний) привод, как это показано на рис. 6. Привод дробилки меньших типоразмеров осуществляется одним электродвигателем. Второй двигатель на крупных дробилках устанавливают для пуска дробилок в том случае, если камера дробления заполнена материалом, т. е. находится «под завалом».
Для пуска дробилки «под
завалом» разработана система
Дробилки ударного действия
Роторные дробилки
В дробилках ударного действия дробимый материал разрушается под действием механического удара, при котором кинетическая энергия движущихся тел полностью или частично переходит в энергию деформации и разрушения.
В отличие от рассмотренных выше дробилок, сжимающих кусок между двумя дробящими поверхностями, в дробилках ударного действия кусок материала обычно подвергается воздействию только с одной стороны, а возникающие при этом усилия дробления определяются силами инерции массы самого куска.
Дробилки ударного действия применяют в основном для измельчения малоабразивных материалов средней прочности (известняка, доломитов, мергеля, угля, каменной соли и т. п.). В некоторых случаях из-за технологических особенностей производства дробилки ударного действия используют и при переработке материалов с повышенной прочностью и абразивностью (например, асбестовых руд, шлаков и т. п.).
Роторные дробилки имеют массивный ротор, на котором жестко закреплены сменные била из износостойкой стали. Дробилки с таким ротором можно применять для дробления крупных кусков сравнительно прочных материалов, т. е. для первичного дробления, а также на последующих стадиях. Дробимый материал получает удары от всей массы ротора и именно это определяет особенности и название дробилки. В молотковых дробилках дробление осуществляется благодаря кинетической энергии молотков, шарнирно подвешенных к ротору. Особенности этих машин определяются конструкцией молотка и поэтому они названы молотковыми.
Конструкции роторных дробилок крупного (ДРК), среднего и мелкого дробления (ДРС) принципиально не отличаются, но соотношение размеров ротора и число отражательных плит у них различное. У дробилок ДРК диаметр ротора больше длины, у дробилок ДРС эти размеры одинаковы. Камера дробления у дробилок ДРК образуется ротором и двумя отражательными плитами, у дробилок ДРС — ротором и тремя плитами.
Рис. 8. Роторная дробилка для крупного дробления
На рис. 8 показана роторная дробилка для крупного дробления.
Корпус дробилки состоит из верхней 1 и нижней 2 частей, выполненных сварными из листовой стали. Нижняя часть является станиной, т. е. основанием дробилки. Станина крепится к фундаменту и на нее устанавливают ротор 3 и верхнюю часть корпуса, которая выполнена с закрепленными на ней отражательными плитами 4.
Верхняя часть корпуса разъемная и состоит из передней и задней частей. Задняя часть посредством винтового, гидравлического или другого механического устройства может откидываться (отводиться) от передней, что облегчает доступ к ротору и плитам для их осмотра и ремонта. Места разъема корпуса герметизируются, чтобы избежать проникновения пыли из дробилки.
Внутренняя поверхность корпуса, образующая камеру дробления, футеруется сменными износостойкими плитами 5 из термически обработанных сталей 45 или 65Г
Нижние части отражательных плит также футеруются сменными плитами 6, изготовленными из высокомарганцовистой стали.
При износе нижней рабочей кромки плиты ее можно повернуть на 180°.
Для регулирования степени дробления, т. е. регулирования зернового состава готового продукта, нижние концы отражательных плит соединены тягами с механизмами 7, расположенными на торцовых стенках корпуса дробилки и регулирующими зазор между плитами и окружностью вращения ротора. Эти механизмы одновременно являются предохранительным (буферным) устройством.
При попадании недробимых
предметов пружины
В рассматриваемой дробилке установлены две отражательные плиты, что характерно для роторных дробилок крупного дробления.
Вместо плит иногда устанавливают отражательные колосниковые решетки. В этом случае частицы определенной крупности сразу отделяются от массы перерабатываемого материала, что для некоторых процессов целесообразно.
Список используемой литературы.
Информация о работе Механизм разрушения материала при измельчении