Отходящие газы

Автор работы: Пользователь скрыл имя, 24 Июля 2013 в 09:13, реферат

Описание работы

1. Очистка ОГ в фильтрах. Механизм. Типы фильтров. Эффективность очистки в фильтрах.
2. Абсорбционные методы очистки ОГ от сероводорода с получением серы: процесс – Стретфорд, железо-содовый.
3. Задача. Эл/станция мощностью 1000 Мвт потребляет в сутки – 7000 т/сут. у угля, содержащего 3,0 % серы и 11% золы. 1/3 зольной части образует шлак, ост. часть – летучую золу. Современные средства очистки дымовых газов задерживают 99% летучей золы.
Составить материальный баланс по сере и по золе.

Файлы: 1 файл

газы.doc

— 121.00 Кб (Скачать файл)

Вариант 9

  1. Очистка ОГ в фильтрах. Механизм. Типы фильтров. Эффективность очистки в фильтрах.
  2. Абсорбционные методы очистки ОГ от сероводорода с получением серы: процесс – Стретфорд, железо-содовый.
  3. Задача. Эл/станция мощностью 1000 Мвт потребляет в сутки – 7000 т/сут. у угля, содержащего 3,0 % серы и 11% золы. 1/3 зольной части образует шлак, ост. часть – летучую золу. Современные средства очистки дымовых газов задерживают 99% летучей золы.

Составить материальный баланс по сере и по золе.

 

 

 

Введение

 

 

До определенного этапа развития человеческого общества, в частности индустрии, в природе существовало экологическое равновесие, т.е. деятельность человека не нарушала основных природных процессов или очень незначительно влияла на них. Экологическое равновесие в природе с сохранением естественных экологических систем существовало миллионы лет и после появления человека на Земле. Так продолжалось до конца XIX в. Двадцатый век вошел в историю как век небывалого технического прогресса, бурного развития науки, промышленности, энергетики, сельского хозяйства. Одновременно как сопровождающий фактор росло и продолжает расти  вредное воздействие индустриальной деятельности человека на окружающую среду. В результате происходит в значительной мере непредсказуемое изменение экосистем и всего облика планеты Земля.

 

В настоящее время  с ростом и бурным развитием промышленности большое внимание уделяется ее экологической  обоснованности, а именно проблеме очистке и утилизации отходов. В  данном реферате рассматривается один из видов отходов промышленности – газовые выбросы предприятий и их механическая очистка фильтрами.

 

1 Классификация газообразных  промышленных выбросов

 

 

В газообразных промышленных выбросах вредные примеси можно  разделить на две группы:

 

а) взвешенные частицы (аэрозоли) твердых веществ — пыль, дым; жидкостей — туман;

 

б) газообразные и парообразные вещества.

 

К аэрозолям относятся  взвешенные твердые частицы неорганического  и органического происхождения, а также взвешенные частицы жидкости (тумана). Пыль – это дисперсная малоустойчивая система, содержащая больше крупных частиц, чем дымы и туманы. Счетная концентрация (число частиц в 1 см3) мала по сравнению с дымами и туманами. Неорганическая пыль в промышленных газовых выбросах образуется при горных разработках, переработке руд, металлов, минеральных солей и удобрений, строительных материалов, карбидов и других неорганических веществ. Промышленная пыль органического происхождения – это, например, угольная, древесная, торфяная, сланцевая, сажа и др. К дымам относятся аэродисперсные системы с малой скоростью осаждения под действием силы тяжести. Дымы образуются при сжигании топлива и его деструктивной переработке, а также в результате химических реакций, например при взаимодействии аммиака и хлороводорода, при окислении паров металлов в электрической дуге и т.д. Размеры частиц в дымах много меньше, чем в пыли и туманах, и составляют от 5 мкм до субмикронных размеров, т.е. менее 0,1 мкм. Туманы состоят из капелек жидкости, образующихся при конденсации паров или распылении жидкости. В промышленных выхлопах туманы образуются главным образом из кислоты: серной, фосфорной и др. Вторая группа – газообразные и парообразные вещества, содержащиеся в промышленных газовых выхлопах, гораздо более многочисленна. К ней относятся кислоты, галогены и галогенопроизводные, газообразные оксиды, альдегиды, кетоны, спирты, углеводороды, амины, нитросоединения, пары металлов, пиридины, меркаптаны и многие другие компоненты газообразных промышленных отходов.

 

В настоящее время, когда безотходная технология находится в периоде становления и полностью безотходных предприятий еще нет, основной задачей газоочистки служит доведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами.

 

 В таблице 1 выборочно приведены  ПДК некоторых атмосферных загрязнителей./1,с.342/

 

 

 

 

 

 

 

 

 

 

 

Таблица 1 – ПДК некоторых атмосферных  загрязнителей.

ВЕЩЕСТВА 

ПДК, мг/м3

 

максимальная разовая                         среднесуточная

 

Аммиак 

0,2 

0,2

 

Ацетальдегид 

0,1 

0,1

 

Ацетон 

0,35 

0,35

 

Бензол 

1,5 

1,5

 

Гексахлоран 

0,03 

0,03

 

Ксилолы 

0,2 

0,2

 

Марганец и его соединения 

— 

0,01

 

Мышьяк и его соединения 

— 

0,003

 

Метанол 

1,0 

0,5

 

Нитробензол 

0,008 

0,008

 

Оксид углерода (СО) 

3,0 

1,0

 

Оксиды азота (в пересчете  на N2O5) 

0,085 

0,085

 

Оксиды фосфора (в пересчете  на P2O5) 

0,15 

0,05

 

Ртуть 

0,0003 

0,0003

 

Свинец 

— 

0,0007

 

Сероводород 

0,008 

0,008

 

Сероуглерод 

0,03 

0,005

 

Серы диоксид SO2 

0,5 

0,05

 

Фенол 

0,01 

0,01

 

Формальдегид 

0,035 

0,012

 

Фтороводород 

0,05 

0,005

 

Хлор 

0,1 

0,03

 

Хлороводород 

0,2 

0,2

 

Тетрахлорид углерода 

4,0 

2,0

 

 

 

При содержании в воздухе нескольких токсичных соединений их суммарная  концентрация не должна превышать 1, то есть

 

 

с1/ПДК1 + с2/ПДК2 + ... + сn/ПДКn = 1,                    (1)

 

 

где c1, с2, …, сn – фактическая концентрация загрязнителей в воздухе, мг/м3;

 

ПДК1, ПДК2, …, ПДКn – предельно допустимая концентрация, мг/м3.

 

При невозможности достигнуть ПДК  очисткой иногда применяют многократное разбавление токсичных веществ или выброс газов через высокие дымовые трубы для рассеивания примесей в верхних слоях атмосферы. Теоретическое определение концентрации примесей в нижних слоях атмосферы в зависимости от высоты трубы и других факторов связано с законами турбулентной диффузии в атмосфере и пока разработано не полностью. Высоту трубы, необходимую, чтобы обеспечить ПДК токсичных веществ в нижних слоях атмосферы, на уровне дыхания, определяют по приближенным формулам, например:

 

 

                                         (2)

 

где ПДВ – предельно  допустимый выброс вредных примесей в атмосферу, обеспечивающий концентрацию этих веществ в приземном слое воздуха не выше ПДК, г/с;

 

Н — высота трубы, м; V – объем газового выброса, м3/с;

 

Dt –разность между температурами газового выброса и окружающего воздуха, °С;

 

A – коэффициент, определяющий условия вертикального и горизонтального рассеивания вредных веществ в воздухе, с2/3- (ОС)1/3 (например, для района Урала А = 160);

 

F— безразмерный коэффициент, учитывающий скорость седиментации вредных веществ в атмосфере (для Cl2, HCl, HF  F = 1);

 

т — коэффициент, учитывающий условия  выхода газа из устья трубы, его определяют графически или приближенно по формуле

 

 

,                                           (3)

 

 

где

 – средняя скорость  на выходе из трубы, м/с; 

 

DT — Диаметр трубы, м.

 

Метод достижения ПДК  с помощью «высоких труб» служит лишь паллиативом, так как не предохраняет атмосферу, а лишь переносит загрязнения  из одного района в другие.

 

В соответствии с характером вредных примесей различают методы очистки газов от аэрозолей и от газообразных и парообразных примесей. Все способы очистки газов определяются в первую очередь физико-химическими свойствами примесей, их агрегатным состоянием, дисперсностью, химическим составом и др. Разнообразие вредных примесей в промышленных газовых выбросах приводит к большому разнообразию методов очистки, применяемых реакторов и химических реагентов.

 

 

2 Фильтрация

 

 

Основана на прохождении  очищаемого газа через различные фильтрующие ткани (хлопок, шерсть, химические волокна, стекловолокно и др.) или через другие фильтрующие материалы (керамика, металлокерамика, пористые перегородки из пластмассы и др.). Наиболее часто для фильтрации применяют специально изготовленные волокнистые материалы — стекловолокно, шерсть или хлопок с асбестом, асбоцеллюлозу. В зависимости от фильтрующего материала различают тканевые фильтры (в том числе рукавные), волокнистые, из зернистых материалов (керамика, металлокерамика, пористые пластмассы).

 

Тканевые фильтры, чаще всего рукавные, применяются при  температуре очищаемого газа не выше 60-65°С. В зависимости от гранулометрического  состава пыли и начальной запыленности степень очистки (КПД) составляет 85-99%. Гидравлическое сопротивление фильтра DР около 1000 Па; расход энергии ~ 1 кВт*ч на 1000 м3 очищаемого газа. Для непрерывной очистки ткани продувают воздушными струями, которые создаются различными устройствами – соплами, расположенными против каждого рукава, движущимися наружными продувочными кольцами и др. Сейчас применяют автоматическое управление рукавными фильтрами с продувкой их импульсами сжатого воздуха.

 

Волокнистые фильтры, имеющие  поры, равномерно распределенные между  тонкими волокнами, работают с высокой  эф­фективностью; степень очистки h = 99,5¸99,9 % при скорости фильтруемого газа 0,15-1,0 м/с и DР=500¸1000 Па.

 

На фильтрах из стекловолокнистых  материалов возможна очистка агрессивных  газов при температуре до 275°С. Для тонкой очистки газов при  повышенных температурах применяют фильтры из керамики, тонковолокнистой ваты из нержавеющей стали, обладающие высокой прочностью и устойчивостью к переменным нагрузкам; однако их гидравлическое сопротивление велико – 1000 Па.

 

Фильтрация – весьма распространенный прием тонкой очистки газов. Ее преимущества – сравнительная низкая стоимость оборудования (за исключением металлокерамических фильтров) и высокая эффективность тонкой очистки. Недостатки фильтрации высокое гидравлическое сопротивление и быстрое забивание фильтрующего материала пылью.

 

 

 

3 Очистка газов в фильтрах

 

 

          В основе  работы пористых фильтров всех  видов лежит процесс фильтрации  газа через пористую перегородку,  в ходе которого твердые частицы  задерживаются, а газ полностью  проходит сквозь нее.

 

 

 

 

 

Рисунок 1 - Динамический пылеуловитель: 1 - «улитка»; 2 - циклон;

 

3 - пылесборный бункер.

 

 

Фильтрующие перегородки весьма разнообразны по своей структуре, но в основном они состоят из волокнистых или  зернистых элементов и условно  подразделяются на следующие типы:

 

      гибкие пористые перегородки - тканевые материалы   из  природных, синтетических или минеральных волокон: нетканыеволокнистые материалы (войлоки, клены   и иглопробивные материалы, бумага, картон, волокнистые маты); ячеистые листы (губчатая   резина, пенополиуретан,  мембранные фильтры);

 

       полужесткие пористые  перегородки — слои      волокон,   стружка,  вязаные   сетки, положенные    на опорных  устройствах или зажатые между  ними;

 

       жесткие  пористые перегородки —    зернистые   материалы   ( пористая керамика или пластмасса, спеченные или спрессованные порошки металлов, пористые стекла,    углеграфитовые материалы и др.); волокнистые материалы (сформированные слои из стеклянных и металлических волокон); металлические сетки и перфорированные листы.

 

 

          В процессе очистки запыленного  газа частицы приближаются к  волокнам или к поверхности  зерен материала, сталкиваются  с ними и осаждаются главным  образом в результате действия  сил диффузии, инерции и электростатического  притяжения.

 

           Проходя через фильтрующую перегородку, поток разделяется на тонкие непрерывно разъединяющиеся и смыкающиеся струйки. Частицы, обладая инерцией, стремятся перемещаться прямолинейно, сталкиваются с волокнами, зернами и удерживаются ими. Такой механизм характерен для захвата крупных частиц и проявляется сильнее при увеличении скорости фильтрования. Электростатический механизм захвата пылинок проявляется в том случае, когда волокна несут заряды или поляризованы внешним электрическим полем.

 

         В фильтрах уловленные частицы накапливаются в порах или образуют пылевой слой на поверхности перегородки, и таким образом сами становятся для вновь поступающих частиц частью фильтрующей среды. По мере накопления пыли пористость перегородки уменьшается, а сопротивление возрастает. Поэтому возникает необходимость удаления пыли и регенерации фильтра.

 

            В зависимости от назначения  и величины входной и выходной  концентрации фильтры условно  разделяют на три класса:

 

фильтры тонкой очистки (высокоэффективные или абсолютные фильтры)  предназначены для улавливания с очень высокой эффективностью (>99%) в основном субмикронных частиц из промышленных газов с низкой входной концентрацией (<1 мг/м3) и скоростью фильтрования <10 см/с. Фильтры применяют для улавливания особо токсичных частиц, а также для ультратонкой очистки воздуха при проведении некоторых технологических процессов. Они не подвергаются регенерации;

Информация о работе Отходящие газы