Подбор сепарационных установок и их применение на месторождений Узень

Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 09:26, дипломная работа

Описание работы

Целью проекта является повышение эффективности сепарации нефти от попутного газа.
С учетом поставленной цели необходимо решить следующие задачи:
Анализ компоновок технологических схем предварительной очистки нефти и сепарационного оборудования.
Проанализировать систему сбора, подготовки и транспортировки продукции скважин месторождения Узень.
Создание устройства, способного осуществлять сепарацию нефти от растворённого газа за счет подачи рабочего газа через перфорированные трубы под слой нефти.

Содержание работы

Введение........................................................................................................................4
І. Геологическая часть
1.1 Общее сведения о месторождении Узень........................................................7
1.2 Стратиграфия .....................................................................................................8
1.3 Тектоника .........................................................................................................10
1.4 Расчлененность эксплуатационных объектов и толщин пластов................12
1.5 Нефтегазоводоносность...................................................................................16
1.6 Геологические запасы нефти и газа................................................................20
ІІ. Технико-технологическая часть
2.1 Анализ и описание существующих технологических схем
предварительной подготовки нефти................................................................24
2.2 Описание технологических процессов очистки нефти.................................30
2.3 Сепарационные установки и область их применения...................................37
2.4 Назначение и конструктивные особенности сепараторов
2.4.1 Факторы, влияющие на эффективность сепарации...............................48
2.4.2 Влияние формы сепаратора на его конструкцию..................................55
2.4.3 Конструкции сепараторов........................................................................57
2.5 Подбор сепарационных установок и их применение
на месторождений Узень.................................................................................70
2.5.1 Определение пропускной способности горизонтального сепаратора
2.5.2 Расчет обечайки сепаратора....................................................................74
2.5.3 Расчёт крышки сепаратора......................................................................75
2.5.4 Расчет фланцевого соединения...............................................................77
2.5.5 Расчёт укрепления отверстий в стенках сепаратора.............................88
2.5.6 Расчёт опор корпуса.................................................................................92
2.6 Схема сбора и транспортировки продукции на месторождении Узень.......95
2.7 Добыча скважинной жидкости на месторождении Узень............................96
2.8 Описание технологического процесса и технологической схемы
производственного объекта, и контроль технологического процеcca......106
2.9 Принципиальная технологическая схема подготовки нефти
месторождения Узень.....................................................................................110
2.10 Подготовка и пуск нефтегазового сепаратора............................................113
ІІІ. "Экономическая часть"
3.1 Расчет экономической эффективности проекта............................................115
ІV. Охрана труда и окружающей среды
4.1 Опасные и вредные производственные факторы
4.1.1 Шум и вибрация ......................................................................................122
4.1.2 Статическое электричество и молниезащита.......................................123
4.1.3 Молниезащита.........................................................................................124
4.1.4 Расчет молниезащиты.............................................................................125
4.1.5 Заземляющие устройства........................................................................127
4.2 Запорная и запорно-регулирующая арматура...............................................129
4.3 Манометры.......................................................................................................130
4.4 Предохранительные устройства от повышения давления...........................131
4.5 Пожарная профилактика
4.5.1 Пожарное оборудование, инвентарь, огнетушители..........................134
4.5.2 Порядок действий персонала при пожаре............................................135
4.6. Экологичность проекта
4.6.1 Средства обеспечения экологической безопасности..........................136
4.6.2 Способы обеспечения экологической безопасности
процесса производства...........................................................................136
Заключение...............................................................................................................138
Список использованной литературы..................................................................139
Приложение

Файлы: 1 файл

альбина ДИПdoc.doc

— 8.85 Мб (Скачать файл)

         Область применения как одноемкостных,  так и двухъемкостных горизонтальных сепараторов весьма обширная.

         Одноемкостные горизонтальные сепараторы применяются для оснащения дожимных насосных станций, для первой, второй и третьей ступеней сепарации на центральных пунктах сбора и подготовки нефти, газа и воды, а двухъемкостными сепараторами в основном оснащаются блочные автоматизированные групповые установки типа Спутник, на дожимных насосных станциях они имеют весьма ограниченное применение. В качестве сепараторов первой ступени двухъемкостные аппараты используются на производительность не более 3000 т/сут по жидкости. Производительность одноемкостных горизонтальных сепараторов, применяемых для первой, второй и третьей ступеней сепарации, может достигать 30 000 т/сут по жидкости на каждой ступени. 

        В объемных сепараторах отделение примесей происходит путем оседания их за счет резкого изменения направления потока газа при одновременном уменьшении скорости его движения.

       Эти сепараторы применяются при давлении газа не выше 100 кгс/см2.  В циклонных сепараторах газ очищается от примесей с помощью центробежных сил инерции, возникающих в циклонной камере при входе газа по тангенциальному вводу. Такие сепараторы применяются при давлениях 50 кгс/см2 и выше.

 

 

 

2.4 Назначение  и конструктивные особенности сепараторов

2.4.1 Факторы,  влияющие на эффективность сепарации

В различных сепараторах  нефть от газа и воды отделяют для: 1) получения нефтяного газа, используемого  как химическое сырье или как  топливо; 2) уменьшения перемешивания нефтегазового потока и снижения тем самым гидравлических сопротивлений, а также возможности образования нефтяных эмульсий; 3) разложения образовавшейся пены; 4) отделения воды от нефти при добыче нестойких эмульсий; 5) уменьшения пульсации давления при транспортировании нефтегазоводяной смеси по сборным коллекторам, проложенным до ДНС или УПН.

      Таким  образом, работа сепараторов любого типа характеризуется тремя показателями:

  • степенью разгазирования нефти или усадкой ее;
  • степенью очистки газа, поступающего в газопровод, от капелек нефти;
  • степенью очистки нефти, поступающей в нефтепровод, от пузырьков газа.

      Следовательно,  в каждой ступени сепарационной установки при   снижении   давления   количество  нефти  уменьшается,   т. е. происходит разгазирование ее и соответственно возрастает количество суммарного газа.

При этом для любых  условий работы сепарационной установки  в герметизированной системе нефтегазосбора имеет место следующий баланс:        Эн + Эг = const. Эффективность работы любого тина сепаратора по степени очистки зависит также от двух основных показателей: количества капельной

жидкости, уносимой потоком  газа из каплеуловительной (каплеотбойный) секции IV, и число пузырьков газа, уносимых потоком нефти из секции сбора нефти III. Чем меньше величины этих показателей, тем эффективнее работа сепаратора.

      Технически  совершенным будет тот сепаратор,  который  при прочих равных  условиях обеспечивает более  высокую степень очистки газа и жидкости и, кроме того, имеет большую производительность с минимально необходимыми затратами металла на его изготовление. Эффективная очистка газа от капельной  жидкости и жидкости от пузырьков газа происходит в таких сепараторах, как правило, при больших значениях скоростей движения газа и жидкости по сечению сепаратора, т. е. при большой производительности. Степень технического совершенства сепаратора характеризуется тремя показателями: 1) минимальным диаметром капель жидкости, задерживаемых в сепараторе; 2) максимально допустимой величиной средней скорости газового потока в свободном сечении или каплеуловительной секции сепаратора и 3) временем пребывания жидкости (нефти или нефтяной эмульсии) в сепараторе, за которое происходит допустимое разделение свободного газа от жидкости.

Для не вспенивающих и  маловязких нефтей время пребывания их в сепараторе рекомендуется принимать равным от 2 до 3 мин, для вспенивающих и вязких нефтей — от 5 до 20 мин. Маловязкими считаются нефти с вязкостью 5* 10-3 Па*с, а вязкими — свыше 1,5*10-2 Па*с.

Конструктивные  особенности сепараторов. На рис. 9 показан общий вид и разрез сепаратора с жалюзийной каплеуловитель 10, который работает

следующим образом. Нефтегазовая смесь под давлением на устьях скважин или давлением, развиваемым насосами ДНС, поступает через патрубок к раздаточному коллектору 6, имеющему по всей длине щель для выхода смеси. Из щели нефтегазовая смесь попадает на наклонные плоскости 4, увеличивающие путь движения нефти и облегчающие тем самым выделение окклюдированных пузырьков газа. В верхней части сепаратора установлена каплеуловительная насадка 10 жалюзийного типа, сечение которой показано на том же рисунке. Основной поток газа вместе с мельчайшими частицами нефти, не успевшими выпасть под действием силы тяжести, встречает на своем пути жалюзийную насадку 10, в которой происходят «захват» (прилипание) капелек жидкости и дополнительное высаждение их из газа; при этом образуется пленка, стекающая по дренажной трубке 3 в секцию сбора нефти III, из которой по трубе 12 она выводится из сепаратора.

           На рис.10. приведен общий вид гидроциклонного двухъемкостного сепаратора. Сепараторы этого типа довольно широко применяют на нефтяных

месторождениях. Принцип работы их заключается  в  следующем.

     Нефтегазовая  смесь сначала поступает в  гидроциклонную головку 2, в которой за счет центробежной силы происходят сепарация газа от нефти и их раздельное движение, как в самой головке, так и в верхней емкости 5. Нефть

 

 

Рис. 9. Вертикальный газонефтяной сепаратор

1 – корпус; 2 – поплавок; 3 – дренажная труба; 4 – наклонные плоскости; 5 – раздаточный коллектор; 6 – ввод газожидкостной смеси; 7 – регулятор давления «до себя»; 8 – выход газа; 9 – перегородка для выравнивания скорости газа; 10 – жалюзийный каплеуловитель; 11 – регулятор уровня; 12 – сброс нефти; 13 – сброс грязи; 14 – люк; 15 – заглушки; I – основная сепарационная секция; II – осадительная секция; III – секция сбора жидкости; IV – секция каплеулавливания.

           

по сливной полке 12 самотеком направляется на уголковые разбрызгиватели II, а затем на сливную полку и стекает с успокоителя уровня. Как только уровень нефти достигнет определенной величины, сработает поплавковый регулятор уровня, приоткрыв исполнительный механизм 14  на нефтяной   линии. Газ проходит в верхней емкости 5 две зоны, где очищается от капельной жидкости и направляется в газовую линию через отвод 8. В этом сепараторе нефтегазовая смесь подводится к корпусу сепаратора по наклонному трубопроводу, наклон которого к горизонту может колебаться в пределах 3 — 4°. К нему приварена вертикально расположенная газоотводная вилка 2, подсоединенная с каплеуловительной секцией 3, имеющей жалюзийные насадки 4.

     Сущность  работы очень проста. В результате падения давления, возникающего при совместном движении нефти и газа по сборным коллекторам (протяженностью от 2 до 8 км), в них происходит медленная, но практически равновесная сепарация нефти и газа, которые в наклонном трубопроводе еще больше разделяются и раздельно годятся: нефть по продолжению трубопровода в корпус сепаратора, а газ по вилке газопровода 2 в каплеуловительную секцию 3. Не успевшие скоалесцировать (соединиться) в крупные агрегаты и не попавшие в газоотводную вилку пузырьки газа вместе с нефтью направляются в плоский диффузор 11, в котором постепенно

происходит снижение скорости нефтегазового потока.

 

Рис.10. Гидроциклонный двухъемкостной сепаратор

 

1 — тангенциальный ввод газонефтяной смеси; 2 — головка гидроциклона; 3 — отбойный козырек газа; 4 — направляющий патрубок; 5 — верхняя емкость сепаратора; б — перфорированные сетки для улавливания капельной жидкости; 7 — жалюзийная насадка; 8 — отвод газа; 9 — нижняя емкость гидроциклона; 10 — дренажная трубка; 11 — уголковые разбрызгиватели; 12 — направляющая полка; 13 — перегородка; 14 — исполнительный механизм

 

       Из  диффузора нефтегазовый поток  попадает с малой скоростью  на наклонные полки 10, где происходит интенсивное отделение оставшихся пузырьков газа от нефти. Основной поток газа, как отмечалось выше, отделяется от нефти до сепаратора при помощи газоотводной вилки 2 и направляется в каплеуловительную секцию 3 для высаждения из газа капелек нефти, задерживаемых жалюзийной  насадкой  4. Таким образом, существенным преимуществом данного сепаратора является предварительное отделение нефти от газа с последующим вводом их по отдельным каналам в корпус сепаратора и каплеуловительную секцию 3. Такой способ ввода продукции скважин в сепаратор позволяет значительно снизить перемешивание нефтегазовой смеси и ускорить отделение нефти от

газа. Верхний и нижний уровни жидкости в сепараторе поддерживаются поплавком 8.

            На эффективность сепарации значительное влияние оказывают физико-химические свойства обрабатываемых продуктов и параметры процесса: температура и давление газожидкостной смеси, размер частиц капельной жидкости и концентрация их в газе, скорость газожидкостной смеси, поверхностное натяжение системы «газ — жидкость». Остановимся отдельно на каждом из этих факторов.

       Температура и давление. В процессах промыслового сбора нефти и газа, подготовки к транспорту и переработки возможны совместное движение или обработка указанных фаз, являющихся составными элементами многофазной системы (нефтегазоводяной смеси). Однако в процессе движения многофазной системы по технологической цепи промысловых сооружений наступает

момент, когда дальнейшее совместное перемещение фаз либо проведение основного процесса становится нерациональным или практически невозможным. При этом необходимо отделить жидкую фазу от газовой.

     Для определения  условий газожидкостного равновесия используются

законы Рауля и Дальтона, согласно которым константа равновесия характеризуется отношением молярных долей компонента в равновесных газовой и жидкой фазах или отношением парциального давления компонента к общему давлению системы. Отсюда следует, что с увеличением давления системы уменьшается молярная концентрация компонента в газовой фазе при одновременном ее возрастании в жидкой. Температура влияет на процесс в обратном направлении: с повышением температуры растет давление паров (а, следовательно, и молярная концентрация компонента) в газовой фазе при соответственном ее уменьшении в жидкой фазе.

Таким образом, законы Дальтона и Рауля раскрывают физическую сущность процессов, происходящих при сепарации под влиянием изменения основных параметров — давления и температуры. Одновременно необходимо учитывать, что с повышением давления плотность и вязкость газа увеличиваются, в то время как плотность твердых и жидких частиц, содержащихся в газе, остается постоянной. Поэтому скорость осаждения твердых и жидких частиц под действием силы тяжести с увеличением давления уменьшается. Однако увеличение давления неодинаково влияет на сепарацию газа от твердых и жидких частиц. Если отделение твердых частиц с увеличением давления всегда ухудшается, то для жидких частиц при этом возникают сложные явления, которые не поддаются учету. В самом деле, при повышении давления испарение жидкости уменьшается, а возможность конденсации паров, находящихся в газе, увеличивается, вследствие чего размеры жидких частиц также должны увеличиваться. Возможно, при определенном давлении наступит равновесие испарения и конденсации жидких капель. Изменение, давления может существенно изменить и удельный объем газа. При повышении давления возможность слияния капелек жидкости возрастает, и эффективность сепарации соответственно также должна повыситься. При повышении температуры плотность газа уменьшается, а вязкость увеличивается. Поэтому скорость осаждения сравнительно крупных частиц (твердых) будет увеличиваться за счет уменьшения плотности газа, а скорость осаждения мелких частиц будет уменьшаться за счет увеличения вязкости. Для частиц жидкости явления, вызываемые изменением температуры и давления газа в сепараторе, гораздо сложнее, так как они в этом случае могут как конденсироваться, так и испаряться. Таким образом, анализ влияния изменения температуры и давления газа на сепарацию показывает, что для отделения твердых частиц наиболее благоприятны низкое давление и высокая температура, а для отделения жидких частиц, наоборот, — высокое давление и низкая температура.

Размер взвешенных частиц и их концентрация в газе. При  сепарации газа от жидкости последняя может находиться как в пленочном, так и в капельном состоянии, причем размеры капель могут изменяться от тысячной доли микрометра до миллиметра и более. Взвешенные в газе частицы, диаметр которых меньше 2 мкм, обычно считаются перманентными суспензиями из-за чрезвычайно низких скоростей оседания, а также вследствие того, что они

невидимы невооруженным глазом. При сепарации большое значение имеют

 концентрация частиц жидкости в единице объема газа и общее количество жидкости, поступающей в сепаратор. Представим себе сепаратор, который отделяет, например, 80 м3 жидкости на 1 млн. м3 газа, причем 8 л этой жидкости находится в виде капель диаметром до 10 мкм. Сепаратор удаляет всю жидкость, за исключением 4 л, поступающих в виде капель диаметром до 10 мкм. Эффективность удаления частиц диаметром до 10 мкм составляет всего лишь 50%, тогда как общая эффективность сепарации равна 99,99%.

Предположим далее, что  этот сепаратор попал в условия, где в него поступает только 2 м3 конденсата на 1 млн. м3 газа, и вся жидкость представлена частицами диаметром до 10 мкм. При той же эффективности удаления частиц диаметром 50 мкм, что и в первом случае, общая эффективность сепарации составит 50%. Таким образом, эффективность сепаратора — понятие относительное, так как все зависит от того, при каких условиях работает сепаратор и каков минимальный размер капелек жидкости, которые он может отделить. Поверхностное натяжение. Размер частиц жидкости в газе, образованных механическим перемешиванием, изменяется обратно пропорционально поверхностному натяжению, т. е. чем больше поверхностное натяжение системы «газ — жидкость», тем меньше • размер капелек жидкости и наоборот. Поверхностное натяжение также значительно влияет на прочность жидкостных пленок. Известно, что чем меньше поверхностное натяжение системы «жидкость — твердое тело», тем легче потоку газа разрушить жидкостную пленку на мельчайшие капельки, которые могут быть вынесены из сепаратора. Обычно при сепарации в промысловых условиях поверхностное натяжение изменяется незначительно и не оказывает существенного: влияния на эффективность сепарации. Однако в лабораторных условиях его всегда следует учитывать. Нельзя распространять результаты опытов, проведенных с воздушноводяными смесями, на промысловые условия сепарации. Существенную роль в процессе сепарации играет скорость газа. Для гравитационных сепараторов уменьшение скорости газа ведет всегда к

повышению эффективности их работы. Для инерционных сепараторов повышение скорости (до определенного предела) ведет к увеличению эффективности.

Информация о работе Подбор сепарационных установок и их применение на месторождений Узень