Автор работы: Пользователь скрыл имя, 26 Октября 2014 в 08:43, реферат
Помимо элементов ПРА, выполняющих функции, в схему аппарата может, входит и вторичный источник питания. Обобщенная структурная схема однолампового ПРА показана на рис. 1.
Кроме основных функций ПРА может подавлять радио - помехи, создаваемые лампой, снижать пульсации её светового потока, обеспечивать высокий коэффициент мощности схемы др. С учетом общеинженерных и экономически соображений к ПРА предъявляется также ряд дополнительных требований.
1. КЛАССИФИКАЦИЯ СХЕМ ПРА
2. СТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП
2.1 ОДНОЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА
2.2 ДВУХЛАМПОВЫЕ СТАРТЕРНЫЕ ПРА С РАСЩЕПЛЕННОЙ ФАЗОЙ
2.3 ТРЕБОВАНИЯ К СТАРТЕРНЫМ ПРА
3. БЕССТАРТЕРНЫЕ ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛЮМИНЕСЦЕНТНЫХ ЛАМП
3.1 КЛАССИФИКАЦИЯ БЕССТАРТЕРНЫХ ПРА
3.2 ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА
4. ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ
5. ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ
6. ЗАЖИГАЮЩИЕ УСТРОЙСТВА ДЛЯ ЛАМП ВЫСОКОГО ДАВЛЕНИЯ
Зажигание ламп в схемах мгновенного зажигания происходит под действием электростатической эмиссии, что отрицательно сказывается на сроке службы электродов. Поэтому для таких схем включения выпускаются специальные лампы с усиленными электродами. Применение обычных стартерных ЛЛ в схемах мгновенного зажигания снижает срок их службы на 50 70 %, и поэтому в нашей стране схемы мгновенного зажигания, как правило, не используют. В дальнейшем мы рассмотрим схемы первой группы и будем относить к ним название «бесстартерные схемы».
Независимо от электрической схемы бесстартерные ПРАдолжны обеспечивать:
1) предварительный нагрев электродов лампы в пусковом режиме до температуры, интенсивной термоэлектронной эмиссии с катода и снижения напряжения зажигания;
2) подачу на лампу зажигающего
напряжения, которое применительно
к ПРАназывают напряжением
3) компенсацию при необходимости напряжения предварительного нагрева электродов, т.е. снижение напряжения нагрева электродов в рабочем режиме по сравнению с пусковым. Это требование обусловлено стремлением обеспечить максимальный срок службы ламп. В последнее время наметилась тенденция выпуска ЛЛ с триспиральными электродами с низким сопротивлением. Такие электроды требуют для своего нагрева напряжения около 3,6 4,4В, которое при значительном запасе на катоде оксидного слоя обеспечивает длительный срок службы ламп даже в схемах без компенсации напряжения предварительного нагрева электродов;
4)стабилизацию рабочего режима ламп в определенных пределах, так же как и стартерные ПРА.
Бесстартерные ПРА,обеспечивающие зажигание ЛЛ с предварительным нагревом электродов, можно разделить на следующие три основные группы:
1)резонансные, в которых
предварительный нагрев
2) с накальным трансформатором для предварительного нагрева электродов. Увеличение напряжения холостого хода может быть достигнуто путем, как усложнения накального трансформатора, так и применения специальных пусковых конденсаторов;
3) с автотрансформаторами
с рассеянием. В таких схемах
повышенное напряжение
3.2 ОСНОВНЫЕ СХЕМЫ БЕССТАРТЕРНЫХ ПРА
Известно множество схем бесетартерных ПРА. Рассмотрим только простейшие, характеризующие сущность физических процессов. На рис. 16, априведена простейшая схема резонансного ПРА с балластным дросселем и пусковым конденсатором. При напряжении сети лампа с холодными электродами не зажигается, так как напряжение ее холодного зажигания выше, чем напряжение сети и напряжение, возникающее на пусковом конденсаторе Сп резонансной цепи. По цепи дроссель — первый электрод — пусковой конденсатор — второй электрод начинает протекать пусковой ток IП,который нагревает электроды лампы
Рисунок16. Схема резонансных ПРА и автотрансформатора с рассеянием: а- простейшая, б- с дополнительной обмоткой; в- с двумя дросселями; г- с автотрансформатором.
Простейшая резонансная схема ПРА на промышленной частоте не приценяется, так как значение емкости пускового конденсатора получается большим, что искажает форму кривой тока лампы и вызывает появление пауз в токе и увеличение коэффициента амплитуды до 2 2,5 вместо нормируемого 1,7.
Отключением пусковой цепочки после зажигания лампы с помощью различных автоматических устройств типа разрядников либо усложнением схемы путем использования дополнительных элементов можно избежать указанных недостатков. Для ПРА, применяемых в светильниках общего и местного освещения, преимущественно используют схему с дополнительной обмоткой на дросселе. Одна из схем приведена на рис. 16,б. В пусковую цепь включена дополнительная обмотка балластного дросселя н . При настройке цепи в режим, близкий к резонансному, можно получить увеличение значения пускового тока. В пусковом режиме ток проходит по основной и добавочной обмоткам дросселя, включенным согласно, в результате чего индуктивность схемы снижается, и напряжение холостого хода определяется повышенным напряжением на пусковом конденсаторе. После зажигания лампы токи, протекающие по балластной и добавочной обмоткам, становятся различными по значениям и фазе, резонанс нарушается, и ток лампы стабилизируется балластной обмоткой.
Более распространенной модификацией резонансной схемы является схема, приведенная на рис. 16,в.Схема содержит два дросселя Др 1 и Др 2, один из которых имеет обмотки н для нагрева электродов. В пусковом режим ток протекает через дроссель Др 1 и конденсатор, что при настройке этой цепи на резонанс обеспечивает увеличенное напряжение на конденсаторе и лампе.
Рисунок 17. Бесстартерные ПРА с нахальным трансформатором: а- включенным параллельно лампе и векторная диаграмма пускового режима; б- с дополнительной обмоткой; в- с пусковым конденсатором и векторная диаграмма пускового режима;
После зажигания лампы конденсатор Сп служит для увеличения коэффициента мощности схемы. Применением одного дросселя с отводом можно достигнуть дополнительного увеличения напряжения во второй обмотке.
На рис. 16,г показана схема с автотрансформатором с магнитным рассеянием с обмотками н для предварительного нагрева электродов. При применении дополнительных обмоток (на рисунке не показаны) можно получить глубокую компенсацию напряжения предварительного нагрева и тем самым снизить потери в ПРА. Схемы с автотрансформатором находят применение в случаях, когда для осветительных, установок используется напряжение сети 100-110 В.
На рис. 17 приведены простые схемы бесстартерного ПРА с накальным трансформатором, используемым для предварительного нагрева электродов. Первичная обмотка трансформатора включена параллельно лампе, что обеспечивает после зажигания лампы компенсацию напряжения предварительного нагрева за счет снижения напряжения на первичной обмотке, начиная со значения напряжения холостого хода до напряжения на горящей лампе. На рис. 17,а дана векторная диаграмма пускового режима. Напряжение холостого хода Uхх является векторной суммой напряжений на первичной и вторичных обмотках трансформатора. Напряжение на первичной обмотке Uдр ,п ниже напряжения сети Uc за счет падения напряжения в обмотке дросселя. Полное сопротивление дросселя в таких схемах ниже на порядок, чем у трансформатора, в результате чего напряжение на первичной обмотке трансформатора в пусковом режиме составляет 0,9-0,95 сетевого. В результате напряжение холостого хода таких схем находится на уровне напряжения сети, а в схемах для ламп с низкоомными электродами при напряжении предварительного нагрева электродов 3,6-4,4 В - несколько ниже сетевого. Поэтому они могут применяться только для ламп, напряжение которых ниже напряжения сети.
Увеличение напряжения холостого хода достигается применением дополнительной обмотки на накальном трансформаторе (рис. 17,б) либо по схеме с дополнительным пусковым конденсатором Сп (рис. 17,в). Емкость пускового конденсатора Сп составляет для ПРА к лампам мощностью 40—80 Вт около 1 мкФ. Пусковой ток в данной схеме имеет емкостный характер.На рис. 17,в приведена векторная диаграмма пускового режима. Выбором параметров элементов пусковая цепь может быть настроена в режим резонанса или близкий к нему при определенном значении напряжения сети. Однако резонансные схемы чувствительны к колебаниям этого напряжения, поэтому на практике параметры указанных схем выбирают исходя из режима со слабо выраженным резонансом.
По схеме рис. 17, ввыпускают ПРА для ламп мощностью 80 Вт.
4. ПУСКОРЕГУЛИРУЮЩИЕ АППАРАТЫ ДЛЯ ЛАМП ТИПОВ ДРЛ, ДРИ И ДНаТ
Пускорегулирующие аппараты для ламп типа ДРЛ делятся на три группы:
1) балластные дроссели для четырехэлектродных ламп, которые зажигаются от сети промышленной частоты при включении*на фазное или линейное напряжение;
2) аппараты импульсного
зажигания, состоящие из балластного
дросселя и специального
3) аппараты мгновенного
зажигания, выполненные по схемам
автотрансформатора с
Основным элементом схем первых двух групп является балластный дроссель, аналогичный дросселям стартерных ПРА. Требования к его параметрам такие же, как к дросселям стартерных ПРА, за исключением требования к току предварительного нагрева электродов (пусковой ток), так как лампы высокого давления зажигаются с холодными электродами. Расшифровка условного обозначения типа ПРА для ламп высокого давления и стартерных ПРА аналогична, но после цифры, указывающей мощность лампы, приводится обозначение типа лампы ДРЛ, ДНаТ или ДРИ. Дроссели, предназначенные для включения ламп типа ДРЛ, нельзя применять для включения ламп типа ДНаТ, так как последние имеют напряжение горения на 30 40 В, ниже чем напряжение горения ламп ДРЛ.
Схемы с автотрансформатором применяют для ламп, у которых напряжение горения больше 0,7 номинального напряжения сети. Автотрансформаторные схемы включения газоразрядных ламп находят применение в сетях напряжением 100 110 В.
Лампы типа ДРИ мощностью 400 Вт включаются с дросселем от ламп типа ДРЛ и универсальным зажигающим устройством типа УИЗУ.
Для включения газоразрядных ламп могут быть использованы также резонансные схемы, аналогичные схемам для ЛЛ. Зажигание ламп высокого давления с холодными электродами, т. е. по схеме мгновенного зажигания, существенно облегчает возможность согласования пускового н рабочего режимов резонансного ПРА, в результате чего можно получить достаточно высокие значения напряжения холостого хода, в 2,5 3 раза превышающие напряжение питающей сети.
5. ЭЛЕКТРОННЫЙ ПУСКОРЕГУЛИРУЮЩИЙ АППАРАТ
Электронный пускорегулирующий аппарат (ЭПРА) обеспечивает работу трубчатых люминесцентных ламп со щадящими режимами пуска. ЭПРА с полумостовым инвертором разработан для управления стандартной лампой Philips TLD58W или лампами аналогичных типов. Схема оптимизирована для ламп мощностью 50 Вт при номинальном напряжении сети 230 В и частоте 50...60 Гц. Щадящий режим пуска увеличивает срок службы лампы. Постоянство мощности лампы обеспечено автоматическим управлением. Предусмотрены защита от емкостного режима работы и защита от удаления лампы.
ЭПРА работоспособен в диапазоне напряжений сети 185...265 В при частоте 50...60 Гц. Автоматическое управление поддерживает мощность горения лампы в пределах 47,6...50,3 Вт при изменении напряжения сети в пределах 200...260 В. Одним из основных компонентов является высоковольтная ИМС UBA2021, предназначенная для управления, как компактными люминесцентными лампами, так и трубчатыми лампами. Микросхема UBA2021, включающая высоковольтный драйвер со схемой запуска, генератор и таймер, обеспечивает управление режимами пуска, подогрева, зажигания и горения лампы, а также защиту от емкостного режима и удаления лампы. UBA2021 управляет работой мощных полевых МОП-транзисторов PHX3N50E, являющихся ключами полумостового инвертора, который питается от сети с номинальным напряжением 230 В и частотой 50...60 Гц. При этом обеспечивается необходимый сдвиг уровней питания полевых транзисторов, осуществляющий защиту от емкостного режима работы. Основными достоинствами этого изделия являются малое число компонентов и низкая стоимость, что достигнуто благодаря применению ИМС UBA2021, которая способна обеспечить максимальную гибкость разработки при минимальном числе периферийных элементов.
Блок-схема устройства приведена на рис.18, полная электрическая схема - на рис.19. Напряжение сети переменного тока преобразуется в питающее полумостовой инвертор напряжение постоянного тока с помощью мостового выпрямителя на четырех диодах и сглаживающего конденсатора. Помехоподавляющий сетевой фильтр (рис.18) препятствует проникновению помех в сеть. Полумостовой инвертор относится к группе высокочастотных резонансных преобразователей напряжения, которые удобны для управления газоразрядными лампами. Используемый принцип переключения двух мощных МОП-транзисторов при нулевом напряжении позволяет уменьшить потери на их переключение и обеспечивает высокий КПД аппарата.
Рисунок18 Блок схема устройства
После подачи сетевого напряжения люминесцентная лампа сначала подогревается. Это называется мягким пуском и обеспечивает надежную и долговечную работу лампы. Величина тока подогрева регулируется микросхемой UBA2021. Этот ток, проходящий через нити накала лампы, разогревает электроды лампы до температуры, обеспечивающей достаточную эмиссию электронов. Достаточный подогрев позволяет уменьшить напряжение зажигания лампы, что снижает ударные электрические нагрузки на элементы схемы. Автоматическое управление в значительной степени стабилизирует излучаемый лампой световой поток в широком диапазоне вариаций напряжения сети.
Рисунок 19 Полная электрическая схема устройства