Автор работы: Пользователь скрыл имя, 09 Июня 2013 в 17:33, курсовая работа
Важным элементом системы управления является диагностика неисправностей и возможностей системы управления. Иногда в процессе эксплуатации случаются непредвиденные ситуации, связанные с нестабильностью температуры подаваемой воды, повышенным износом и люфтом исполнительного механизма или связанные с другого рода ограничениями, накладываемыми на исполнительные системы. Заложенные в систему методы диагностики должны выявлять нестандартные ситуации и своевременно перестраивать алгоритмы управления, поддерживая при этом параметры микроклимата с минимально возможным отклонением.
ВВЕДЕНИЕ 2
1. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 4
1.1.Характеристика технического объекта……………………………………4
1.2. Расчёт параметров настройки регулятора………………………………..5
2. ВЫБОР ДАТЧИКОВ И ИСПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 7
2.1. Датчик влажности воздуха…………………………………………….…..7
2.2. Датчик расхода воды на распыление…………………………………….11
2.3. Исполнительный механизм……………………………………………….13
3. РАСЧЁТ ПОГРЕШНОСТЕЙ 15
3.1. Разрядности АЦП и ЦАП………………………………………………… 15
3.2. Трансформированная погрешность………………………………………16
3.3. Инструментальная погрешность…………………………………………. 16
4. ПЕРВИЧНАЯ ОБРАБОТКА 18
5. ВЫБОР БАЗОВОГО КОМПЛЕКСА 22
5.1. Микроконтроллер……………………………………………………….... 22
5.2. Аналого-цифровой преобразователь…………………………………… 24
5.3. Цифро-аналоговый преобразователь………………………………….... 26
6. СТРУКТУРА АСУТП 28
6.1. Назначение системы……………………………………………………… 28
6.2. Архитектура системы………………….………………………………….28
ЗАКЛЮЧЕНИЕ 30
СПИСОК ЛИТЕРАТУРЫ 31
Выражение расчёта параметра для алгоритма экспоненциального сглаживания, если задан коэффициент ослабления помех :
Первое сглаженное значение будет получено с заданной точностью в соответствии с алгоритмом спустя время:
.
Это время будет возрастать с увеличением точности вычислений δ. Достоинством алгоритма экспоненциального сглаживания, по сравнению со скользящим окном, является малый объем памяти, хотя он значительно дольше входит в установившийся режим.
Рис.14 .Результаты работы алгоритмов проверки на достоверность,
сглаживания
скользящим средним с коэффициентом ослабления
помех
экспоненциального сглаживания со степенью приближения δ = 10-5
для сигнала с датчика влажности.
5.1. Микроконтроллер
ADuC7020 - микроконтроллер фирмы Analog Devices для прецизионной обработки аналоговых сигналов, содержащий в своем кристалле полнофункциональную 12-разрядную систему сбора и обработки данных на основе ядра микроконтроллера ARM7TDMI и 12-разрядного АЦП с частотой преобразования 1 МГц. По аналогии с другими интегральными преобразователями данных микроконтроллер характеризуется сочетанием на одном кристалле прецизионного аналогово-цифрового и цифро-аналогового преобразования и флэш-микроконтроллера.
Рис.11. Функциональная схема микроконтроллера
(ИОН – источник опорного напряжения, ПЛМ – программируемая логическая матрица, УАПП – устройство асинхронной приемо-передачи, ОЗУ – оперативное запоминающее устройство, MIPS – млн. операций в сек.)
Отличительные особенности:
Устройство тактируется от встроенного генератора с синтезатором частоты с ФАПЧ (PLL), который генерирует тактовые импульсы с частотой до 45 МГц. Этот тактовый сигнал проходит через программируемый делитель частоты, с выхода которого тактовая частота поступает на ядро процессора. В микросхеме применено микропроцессорное ядро ARM7TDMI, 16/32-разрядный RISC процессор, обеспеч*********ивающий пиковую производительность до 45 миллионов операций в секунду (MIPS). На кристалле имеется 62 kB энергонезависимой
флэш/ЕЕ памяти, а также 8 kB статического ОЗУ (SRAM). Для ядра ARM7TDMI вся память и регистры доступны в одном линейном пространстве памяти.
Встроенное программное обеспечение поддерживает внутрисхемную последовательную загрузку через порты последовательных интерфейсов UART и JTAG, при этом через интерфейс JTAG можно осуществлять эмуляцию.
Данные микроконтроллеры работают при напряжении питания 2,7 … 3,6 В и их параметры нормированы для индустриального температурного диапазона
-40°C... 125°C. При работе на частоте 45 МГц рассеиваемая мощность составляет 150 мВт.
4.2. Аналого-цифровой преобразователь
Аналого-цифровой преобразователь, входящий в состав ADuC7020 – это быстродействующий, многоканальный 12-разрядный АЦП. Он работает при напряжении питания 2.7...3.6 В и обеспечивает производительность до 1 миллиона отсчетов в секунду (1 MSPS) при тактовой частоте 45 МГц. В блок АЦП входят многоканальный мультиплексор, дифференциальное устройство выборки-хранения, встроенный источник опорного напряжения (ИОН) и собственно АЦП.
Преобразователь представляет собой 12-разрядный АЦП последовательного приближения на основе двух ЦАП на переключаемых конденсаторах. АЦП может работать в одном из трех различных режимов, в зависимости от заданной конфигурации:
• полностью дифференциальный режим – для слабых дифференциальных сигналов;
• однополярный режим – для любых однополярных сигналов
• псевдодифференциальный режим – для любых однополярных сигналов, но при этом обеспечивается преимущество – подавление синфазного сигнала псевдодифференциальным входом.
Данный преобразователь работает с аналоговым сигналом в диапазоне от 0 до VREF при работе в однополярном или псевдодифференциальном режиме. В полностью дифференциальном режиме синфазное напряжение VCM входного сигнала должно находиться в диапазоне 0...AVDD и амплитуда входного сигнала не должна превышать 2·VREF.
На кристалле имеется прецизионный, высокостабильный источник опорного напряжения (ИОН) напряжением 2.5 В. Также можно использовать внешний ИОН, как описано ниже. С помощью программы запускается режим одиночного или непрерывного преобразования. Кроме того, для запуска аналого-цифрового преобразования может быть использован сигнал на входе CONVSTART, выходной сигнал встроенной в кристалл программируемой логической матрицы (PLA), а также сигнал переполнения таймера Timer1 или Timer2.
В псевдодифференциальном или однополярном режиме входной сигнал находится в диапазоне 0...VREF. Выходной код в псевдодифференциальном или однополярном режиме – прямой двоичный код, единица младшего разряда (LSB) соответствует 1 LSB = FS/4096 или 2.5 В/4096 = 0.61 мВ = 610 мкВ при опорном напряжении VREF = 2.5 В. В идеале характеристика преобразования проходит через точки 1/2 LSB, 3/2 LSBs, 5/2 LSBs, . . ., FS–3/2 LSB. Идеальная характеристика преобразования показана на рисунке 12.
Рис.12. Характеристика преобразования АЦП в
псевдодифференциальном или однополярном режиме
В полностью дифференциальном режиме амплитуда дифференциального сигнала представляет собой разность между величинами сигналов на входах VIN+ и VIN– (то есть VIN+ – VIN–). Максимальный размах дифференциального сигнала таким образом составляет величину от –VREF до + VREF (то есть 2·VREF). Это без учета синфазного сигнала (common mode, CM). Синфазный сигнал является средним двух сигналов, т.е. (VIN+ + VIN–)/2 и таким образом синфазный сигнал – это уровень, относительно которого изменяются два входных сигнала. Поэтому пределы изменения сигнала на каждом входе определяются величиной CM ± VREF/2. Синфазное напряжение устанавливается с помощью внешних цепей и его диапазон зависит от величины VREF. В полностью дифференциальном режиме аналоговый сигнал преобразуется в дополнительный цифровой код с величиной 1 LSB = 2·VREF/4096 или 2·2,5 V/4096 =1,22 мВ при VREF = 2,5 В. В идеале характеристика преобразования проходит через точки 1/2 LSB, 3/2LSBs, 5/2LSBs, ..., FS–3/2 LSB. Идеальная характеристика преобразования показана на рисунке 13.
Рис.13. Характеристика преобразования АЦП в
полностью дифференциальном режиме.
4.3. Цифро-аналоговый преобразователь
В микросхеме ADuC7020 имеется четыре 12-разрядных ЦАП с выходом напряжения. Каждый ЦАП обладает выходным буфером с полным диапазоном
напряжения (rail-to-rail) и способным работать на нагрузку 5 кОм/100 пФ. Буферы можно отключить.
ЦАП может работать в трех диапазонах выходного сигнала: 0...VREF (при работе с внутренним ИОН 2.5 В),0...DACREF (вывод 56) и 0...AVDD. К выводу DACREF подключается внешний опорный источник. Диапазон сигнала на этом входе может составлять от 0 до AVDD.
Каждый ЦАП управляется независимо при помощи регистра управления и регистра данных. Эти регистры одинаковы у всех четырех.
Структура ЦАП представляет собой цепочку резисторов (string DAC) с буферным усилителем на выходе. ИОН для каждого ЦАП может выбираться пользователем программно. Это может быть AVDD, VREF или DACREF. В режиме 0–AVDD сигнал на выходе ЦАП изменяется в диапазоне от 0 до
напряжения питания на выводе AVDD. В режиме 0–DACREF сигнал на выходе ЦАП изменяется в диапазоне от 0 до напряжения на выводе DACREF. В режиме 0–VREF сигнал на выходе ЦАП изменяется в диапазоне от 0 до напряжения внутреннего ИОН VREF = 2.5 В. Буфер на выходе ЦАП обладает rail-to-rail выходом. Это означает что при отсутствии нагрузки сигнал на выходе может приближаться ближе чем на 5 мВ к напряжениям питания (AGND и AVDD). Более того,параметры, характеризующие линейность ЦАП (при нагрузке 5 кОм) гарантированы для всего диапазона кода, за исключением диапазонов кода 0...100 и (если только АЦП работает в диапазоне 0–AVDD) для кодов 3995...4095. Линейность ухудшается вблизи "земли" и вблизи AVDD из-за насыщения выхода усилителя.
Чтобы уменьшить эффект насыщения выходного усилителя на конечных участках характеристики и уменьшить погрешности смещения и усиления можно
отключить внутренний буфер с помощью управляющего регистра ЦАП. Это позволит получить полный диапазон сигнала на выходе ЦАП (rail-to-rail),
и этот сигнал затем должен быть буферирован с помощью внешней схемы на усилителе с биполярным питанием с целью получить rail-to-rail сигнал на
выходе. Этот внешний буфер должен располагаться как можно ближе к
СТРУКТУРА АСУТП
6.1. Назначение системы
Разрабатываемая АСУТП представляет собой комплекс автоматизированного контроля и управления влажностным режимом теплицы и является программно-технической системой для достоверного измерения состояния климата в теплице и расчет на этой основе управляющих воздействий на исполнительные механизмы инженерного оборудования теплицы.
Система должна выполнять следующие функции:
6.2. Архитектура системы
Архитектура разрабатываемой системы имеет два уровня: нижний – подсистема управления (датчики, микроконтроллер, исполнительные механизмы и оборудование) и верхний – пост оператора (персональный компьютер). Связь между уровнями осуществляется по интерфейсу RS-485. Реализация алгоритмов управления осуществляется с помощью автоматизированного модуля верхнего уровня (например, SCADA-система TRACE MODE), который также отвечает за интерфейс на посту оператора.
Рис.15. Мнемосхема АСУТП.
ЗАКЛЮЧЕНИЕ
В данном курсовом проекте была синтезирована двухуровневая АСУТП, которая осуществляет дискретное регулирование влажности воздуха и контроль расхода воды на распыление в теплице. По заданным параметрам ОУ путём моделирования были определены параметры настройки ПИ-регулятора, который обеспечивает необходимую точность регулирования и качество отработки входных воздействий (здесь – задание величины влажности). Используя алгоритмы первичной обработки, исследовалось влияние их параметров на характеристики сигнала с датчика влажности. Исходя из условия величины погрешности вычисления кода управления, были рассчитаны разрядности элементов ЦУУ (АЦП, ЦАП и АЛУ микроконтроллера) и произведен выбор комплекса технических средств.
СПИСОК ЛИТЕРАТУРЫ
1) Пьявченко Т.А. Автоматизированное управление в технических системах. Учебное методическое пособие, 1999 г.
2) Автоматизированная система
3) http://www.gaw.ru/
4) http://www.optimalsystems.ru/
5) http://www.fito-agro.ru/
Информация о работе Разработка автоматизированной системы управления теплицой