Автор работы: Пользователь скрыл имя, 23 Мая 2013 в 15:48, курсовая работа
Целью курсовой работы является стрельчатая лапа, его значение и роль.
Задачи курсовой работы в связи с указанной целью являются:
- расшифровать марку заданной стали, описать ее микроструктуру, механические свойства до окончательной термообработки и указать, к какой группе по назначению она относится;
- описать характер влияния углерода и легирующих элементов заданной стали на положение критических точек;
- выбрать и обосновать последовательность операций предварительной и окончательной термообработки деталей;
- назначить и обосновать режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда)
Введение………………………………………………………… 3
Глава I. Аналитический обзор источников информации
по стрельчатым лапам сельско-хозяйственным машинам………………………………………………………….
5
1.1 Стрельчатые лапы ……………………………………………….. 5
1.2 Виды стрельчатых лап и их применение.……………………… 10
1.3 Способы изготовления стрельчатой лапы культиватора……... 13
Глава II. Разработка технологического процесса термической обработки детали………………………………………………..
18
2.1 Расшифровка марки стали………………………………………. 18
2.2 Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты………………………………………………………..
21
2.3 Последовательность операции предварительной и окончательной термообработки деталей……………………….
25
2.4 Режим операций предварительной и окончательной термообработки детали…………………………………………..
26
Заключение……………………………………………………….. 29
Литература……………………………………………………….. 30
Температура критических точек материала 65Г.
Ac1 = 721 , Ac3(Acm) = 745 , Ar3(Arcm) = 720 , Ar1 = 670 , Mn = 270 |
Механические свойства при Т=20oС материала 65Г .
Сортамент |
Размер |
Напр. |
sв |
sT |
d5 |
y |
KCU |
Термообр. |
- |
мм |
- |
МПа |
МПа |
% |
% |
кДж / м2 |
- |
980 |
785 |
8 |
30 |
Состояние поставки | ||||
Лента отожжен. |
до 1.5 |
650 |
15 |
Твердость материала 65Г после отжига , |
HB 10 -1 = 241 МПа |
Твердость материала 65Г без термообработки , |
HB 10 -1 = 285 МПа |
Физические свойства материала 65Г .
T |
E 10- 5 |
a 10 6 |
L |
r |
C |
R 10 9 |
Град |
МПа |
1/Град |
Вт/(м·град) |
кг/м3 |
Дж/(кг·град) |
Ом·м |
20 |
2.15 |
37 |
7850 |
|||
100 |
2.13 |
11.8 |
36 |
7830 |
490 |
|
200 |
2.07 |
12.6 |
35 |
7800 |
510 |
|
300 |
2 |
13.2 |
34 |
525 |
||
400 |
1.8 |
13.6 |
32 |
7730 |
560 |
|
500 |
1.7 |
14.1 |
31 |
575 |
||
600 |
1.54 |
14.6 |
30 |
590 |
||
700 |
1.36 |
14.5 |
29 |
625 |
||
800 |
1.28 |
11.8 |
28 |
705 |
||
T |
E 10- 5 |
a 10 6 |
L |
r |
C |
R 10 9 |
Технологические свойства материала 65Г .
Свариваемость: |
не применяется для сварных конструкций. |
Флокеночувствительность: |
малочувствительна. |
Склонность к отпускной хрупкости: |
склонна. |
Обозначения:
Механические свойства : | |
sв |
- Предел кратковременной прочности , [МПа] |
sT |
- Предел пропорциональности (предел текучести для остаточной деформации), [МПа] |
d5 |
- Относительное удлинение при разрыве , [ % ] |
y |
- Относительное сужение , [ % ] |
KCU |
- Ударная вязкость , [ кДж / м2] |
HB |
- Твердость по Бринеллю , [МПа] |
Физические свойства : | |
T |
- Температура, при которой получены данные свойства , [Град] |
E |
- Модуль упругости первого рода , [МПа] |
a |
- Коэффициент температурного (линейного) расширения (диапазон 20o - T ) , [1/Град] |
l |
- Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)] |
r |
- Плотность материала , [кг/м3] |
C |
- Удельная
теплоемкость материала ( |
R |
- Удельное электросопротивление, [Ом·м] |
Свариваемость : | |
без ограничений |
- сварка производится
без подогрева и без |
ограниченно свариваемая |
- сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая |
- для получения
качественных сварных |
2.2Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты
Марганец понижает точку А3 и повышает точку А4 (расширяет области γ-железа). В присутствии марганца понижается температура эвтектоидного превращения стали (точка А1), а также понижается содержание углерода в эвтектоиде (перлите), С углеродом марганец образует карбид Mn3C. Карбид марганца Mn3C и карбид Fe3C обладают неограниченной растворимостью один в другом. Поэтому в марганцовистой стали находится сложный карбид типа (Fe, Mn) 3C. Растворяясь феррите, марганец повышает его твердость и прочность и понижает вязкость. По сравнению с другими легированными элементами марганец наиболее резко уменьшает критическую скорость закалки, т. е значительно повышает прокаливаемость стали, снижает наиболее резко температуру мартенситного превращения. После охлаждения на воздухе в марганцовистых сталях в зависимости от содержания в них углерода и марганца могут образоваться различные структуры – перлит, аустенит, мартенсит. Чем больше в стали марганца, тем при меньшем содержании углерода образуется структуры мартенсита и аустенита.
Марганец способствует
росту зерна стали при
На процесс цементации стали марганец оказывает положительное влияние, ускоряет насыщение стали углеродом.
Температура критических точек, 0С.
Ас1 |
Ас3 |
Аr1 |
Ar3 |
723 |
760 |
680 |
740 |
Применение стали 65Г и термообработка изделий: пружины спиральные, листовые и пружинные шайбы делают из стали 65Г и других пружинно-ресорных сталей. Для изготовления пружин применяют пружинную сталь. Твёрдость пружин находится в пределах Rc = 40-50, а пружинных шайб Rс = 40-48. При приёмке пружины проверяют на твёрдость и на упругость. Метод проверки должен, по возможности, приближаться к фактическим условиям работы пружин (растяжение, сжатие или изгиб).
Пружины, изготовленные из термически обработанной (патентированной) проволоки или ленты классов Н, П и В, проходят дополнительный отпуск при температуре 250-350° для снятия внутренних напряжений, возникших при их изготовлении, и для повышения упругих свойств проволоки.
Отпуск пружин лучше всего производить в селитровых ваннах в течение 5-10 мин., в зависимости от сечения материала. При отпуске в нефтяных или электрических печах следует особое внимание обращать на равномерность нагрева. Время отпуска в этих печах 20-40 мин.
Пружины, изготовленные из отожжённой стали, подвергают закалке и отпуску. В случае изготовления пружин из проволоки диаметром более 6 мм перед закалкой производят высокий отпуск при температуре 670-720° для устранения наклёпа, явившегося результатом холодной навивки. Пружины, навиваемые нагорячо, перед закалкой проходят нормализацию.
Для нагрева под закалку пружины помещают в камерные печи или соляные ванны, нагретые до требуемой температуры. Во избежание деформации пружины крупных размеров нагревают в специальном приспособлении.
Мелкие пружины в печь загружают на противне. Выдержка в печи должна быть наименьшая - для предотвращения окисления и обезуглероживания. Для уменьшения времени пребывания в печи мелкие пружины кладут на предварительно нагретый противень. При отсутствии в печи защитной атмосферы пружины упаковывают в изолирующую среду или же забрасывают в печь небольшие количества древесного угля. Охлаждают пружины в масле. Охлаждать пружины в воде во избежание появления трещин не рекомендуется. В случае необходимости закалки в воде выдержка должна быть не более 2-3 сек. с последующим охлаждением в масле.
Перед отпуском пружины очищают от масла промывкой в содовом растворе или тщательной протиркой в опилках. Не удалённое с пружин масло при отпуске вспыхивает и изменяет условия отпуска, что приводит к неравномерному нагреву и заниженной твёрдости. Температура отпуска 300-420°. Отжиг крайних витков производится в свинцовой ванне.
Крупные пружины перед отпуском надевают на трубы для устранения коробления.
Следует обратить внимание на поверхность материала, идущего для изготовления пружин. Риски, волосовины и прочие дефекты ведут к образованию трещин, а обезуглероженный слой - к уменьшению упругих свойств пружины.
Весьма часто антикоррозийные покрытия, применяемые для ряда пружин, придают им хрупкость вследствие насыщения металла водородом во время травления и в процессе покрытия. Особенно это заметно на пружинах из проволоки или ленты малого сечения. Эта хрупкость, называемая травильной или водородной, устраняется нагревом готовых пружин в масле, глицерине или сушильном шкафу при температуре 150-180° в течение 1-2 час.
Однако при длительном травлении металл насыщается водородом настолько сильно, что указанная температура не устраняет хрупкости и пружины необходимо отжигать. Во избежание глубокого наводороживания пружины из тонкой проволоки или ленты перед покрытием не следует травить, а нужно подвергать их пескоструйной очистке и после Покрытия нагревать, как указано выше.
Диаграмма состояния железо-цементит
(рис.2.1)
Химический состав в % материала 65Г
C |
Si |
Mn |
Ni |
S |
P |
Cr |
Cu |
0.62 - 0.7 |
0.17 - 0.37 |
0.9 - 1.2 |
до 0.25 |
до 0.035 |
до 0.035 |
до 0.25 |
до 0.2 |
Основными легирующими элементами стали 65Г являются марганец и кремний и относится к перлитному классу. Перлитный класс - сталь, имеющая после нормализации структуру перлит (сорбит или тростит), перлит (сорбит или тростит) + феррит, перлит (сорбит или тростит) + заэвтектоидные карбиды (строительные, конструкционные и инструментальные углеродистые и низколегированные стали). Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС. Легирование (за исключением кремния и марганца) мало влияет на предел упругости - главное свойство этих сталей. Более существенно оно проявляется в повышении прокаливаемости, релаксационной стойкости, предела выносливости.
Марганец в стали 65Г предназначен:
Во-первых, для устранения окислов железа, которые образуются при производстве литой стали – обыкновенно вводят в жидкий металл некоторое количество марганца, в виде зеркального чугуна или ферромангана. Часть марганца зеркального чугуна раскисляет окислы и переходит в шлак, часть же остается в стали в виде соединения с железом или просто механическая примесь.
Во-вторых марганец увеличивает твердость, повышает предел упругости и сопротивление разрыву, а кроме того уплотняет сталь, что для пружинно-рессорсной стали имеет важное значение.
Кроме марганца, в стали 65Г в значительном количестве содержится: кремний и хром. Кремний значительно повышает упругие свойства стали, но несколько снижает ударную вязкость. Хром в свою очередь, затрудняет рост зерна при нагреве, повышает механические свойства стали при статической и ударной нагрузке, повышает прокаливаемость и жаростойкость, режущие свойства и стойкость на истирание. При значительных количествах хрома сталь становится нержавеющей и жаростойкой. Так же в данной стали присутствуют вредные вещества, такие как фосфор и сера, данные примеси, отрицательно сказываются на качестве сталей, но в современном мире при производстве металла данные примеси стали постоянным сопутствующим элементом всех металлов. Благо, сталь 65Г, содержит много марганца, который в значительной степени устроняет серу и фосфор из стали.