Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах

Автор работы: Пользователь скрыл имя, 16 Ноября 2013 в 18:08, доклад

Описание работы

Руководящий документ устанавливает для организаций топливно-энергетического комплекса единые требования проведения геофизических исследований и работ в нефтяных и газовых скважинах приборами на кабеле и наземным оборудованием, обеспечивающим цифровую регистрацию данных измерений и сопутствующей информации.
Результаты геофизических исследований и работ в скважинах (ГИРС) являются одним из основных видов геологической документации скважин, бурящихся для поисков, разведки и добычи нефти и газа. Их применяют для решения геологических, технических и технологических задач, возникающих на всех этапах жизни скважины:
- обеспечения заданных параметров бурения;

Файлы: 1 файл

ТЕХНИЧЕСКАЯ ИНСТРУКЦИЯ ПО.doc

— 1.71 Мб (Скачать файл)

Реально выполняют 3-7 записей, прослеживая  продвижение меченых жидкостей в исследуемом интервале.

13.6.5 В необсаженных скважинах  поиск проницаемых пород ведут  в призабойной части, которая  находится ниже низа бурильных  труб на 40-50 м. Продавливание меченой  жидкости, объем которой составляет 2-2,5 м3, осуществляют буровыми насосами через бурильные трубы. При достижении меченой жидкостью исследуемого интервала производят активацию продавливания посредством многократных подъемов и спусков бурильных труб в пределах одной свечи.

13.6.6 В обсаженных скважинах меченую жидкость продавливают в исследуемый интервал с помощью насосного агрегата, контролируя ее перемещение прибором ГК или НК, опущенным в скважину через лубрикатор.

13.6.7 Выделение поглощающих пластов  (коллекторов в открытом стволе, мест повреждения обсадной колонны в обсаженной скважине) ведут по положению аномалий естественной гамма-активности или нейтронных характеристик, выявленных в результате контролируемого воздействия.

Место повреждения колонны отмечается резким изменением показаний ГК или  НК и его стабильным положением во времени.

Интервал заколонного перетока определяется как интервал между  местом негерметичности и поглощающим  пластом. Его выделяют по появлению  еще одной аномалии и постепенному снижению ее амплитуды во времени в границах поглощающего пласта.

13.6.8 Подготовку и проведение  работ, обработку и оформление  результатов ведут с соблюдением  требований раздела 6.

13.7 Ликвидация асфальтеновых, гидратных и парафиновых образований

13.7.1 Ликвидацию асфальтеновых,  гидратных и парафиновых осложнений в насосно-компрессорных трубах (осадок на стенках, пробки) осуществляют с помощью электронагревателей прямого действия — ТЭНов, электрохимических и индукционных, опускаемых в скважину на геофизическом кабеле.

13.7.2 Комплект оборудования для  проведения работ содержит: каротажный подъемник; геофизический или специальный кабель, обеспечивающий подачу к нагревателю требуемой мощности электрического тока; лубрикатор с боковым вентилем для стравливания жидкости; разделительно-повышающий трансформатор, разделяющий нагреватель и общую электрическую сеть промысла; нагреватель.

Подключение трансформатора к сети выполняют по стандартной схеме  — четырехпроводной линией с глухозаземленной нейтралью или трехпроводной линией с заземлением на контур.

Заземление трансформатора и подъемника выполняют медными проводами сечением не менее 16 мм2. Суммарная величина сопротивления заземляющего провода и контура заземления (устья скважины) не должна превышать 4 Ом.

13.7.3 Работы выполняют по планам, которые составляют на каждую скважину и утверждают у главного инженера нефтепромыслового предприятия.

13.7.4 Готовность скважины к проведению  работ по ликвидации осложнений  оформляется двусторонним актом,  который подписывают представитель  недропользователя и начальник  геофизической партии (отряда). Подготовка должна соответствовать требованиям приложения Б. Кроме того:

- не далее, чем в 5 м от  устья, должна быть установлена  емкость для сбора жидкости, стравливаемой через боковой вентиль лубрикатора;

- скважина (НКТ) должна быть заполнена жидкостью до устья;

- в скважинах, где ожидается  буферное давление более 3 МПа,  содержащих нефтяные пласты с  газовым фактором более 100 м33 и во всех газовых скважинах, в которых отсутствует свободный выход газа, ликвидацию осложнений производят с использованием цементировочного агрегата или другого насоса, подсоединенного к выкидной линии фонтанной арматуры и предназначенного создавать противодавление в НКТ с целью исключения самопроизвольного выброса электронагревателя.

13.7.5 Спуск нагревателя в скважину производят через лубрикатор при закрытых задвижках на выкидных линиях и открытых трубной и затрубной задвижках со скоростью не более 5000 м/ч. При подходе и в предполагаемом интервале осложнения скорость спуска уменьшают до 1000 м/ч и далее до 100 м/ч.

Контроль за глубиной спуска ведут  с помощью механического счетчика и датчика глубин, установленного на мерном ролике.

13.7.6 Подачу напряжения питания  на электронагреватель производят  только после его спуска в  интервал осложнения. Пусковой ток  составляет 20-40 А, номинальный — 20-30 А.

В процессе проведения работ осуществляют регистрацию тока питания нагревателя, глубины его спуска и хронометраж  работ.

13.7.7 После прохождения электронагревателем  10-15 м в интервале осложнения, но не более чем через один час его работы, производят подъем нагревателя до устья скважины с последующим спуском до места последнего прогрева.

13.7.8 После разрушения осложнения  по всему интервалу электронагреватель  выключают и поднимают на поверхность.

За 50 м до устья скважины прекращают подъем нагревателя лебедкой и вручную втягивают его в лубрикатор. Закрывают центральную задвижку фонтанной арматуры, сбрасывают давление в лубрикаторе и извлекают нагреватель.

13.7.9 Работы  прекращают досрочно, если при  повторных спуско-подъемах нагревателя и прогревах в течение 1-2 ч он останавливается на одной глубине, что свидетельствует о нахождении в НКТ посторонних предметов (металла, проволоки и т.п.).

13.7.10 При  прихвате геофизического кабеля, вызванного застыванием асфальтеновых  или парафиновых отложений выше нагревателя, необходимо его разогреть подачей со вторичной обмотки трансформатора через коллектор каротажной лебедки трехфазного напряжения.

 

Часть вторая. ВИДЫ И МЕТОДЫ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ И РАБОТ

 

14 ЭЛЕКТРИЧЕСКИЙ И ЭЛЕКТРОМАГНИТНЫЙ КАРОТАЖ

 

14.1 Основные положения

14.1.1 Электрический  и электромагнитный каротаж —  исследования скважин, основанные  на изучении электрических и  электромагнитных свойств горных  пород и насыщающих их флюидов.

14.1.2 Электрический каротаж (ЭК) - исследования горных пород, основанные  на регистрации параметров естественного  или искусственного постоянного  (квазипостоянного) электрических полей.

14.1.2.1 Электрический  каротаж, основанный на регистрации  параметров естественного электрического поля, представляет собой каротаж потенциалов самопроизвольной поляризации (ПС). Измеряемой величиной является потенциал электрического поля ПС (Uпс) или разность потенциалов(DUпc). Единица измерения - милливольт (мВ).

14.1.2.2 Электрический каротаж, основанный на регистрации параметров постоянного (квазипостоянного) искусственного электрического поля, включает следующие виды: боковое каротажное зондирование (БКЗ), боковой (БК), боковой микро- (БМК) и микрокаротаж (МК), каротаж вызванных потенциалов (ВП), токовую резистивиметрию (Рез.). Они объединяются под общим названием «каротаж сопротивлений» (КС). Измеряемой величиной является кажущееся удельное электрическое сопротивление (rк) среды. Единица измерения - ом-метр (Ом·м).

14.1.2.3 Стандартный каротаж - исследования, включающие регистрацию потенциалов ПС и кажущихся сопротивлений одним или двумя не фокусированными (потенциал- и градиент-зонд) зондами, дойны которых выбраны постоянными для данного района работ.

14.1.2.4 Электрический каротаж не выполняют в скважинах с промывочной жидкостью на непроводящей основе.

14.1.3 Электромагнитный  каротаж (ЭМК) — исследования  горных пород, основанные на  измерении параметров искусственного  переменного электромагнитного  поля.

14.1.3.1 Электромагнитный каротаж в области низких частот (десятки и первые сотни кГц), в которой слабо проявляются волновые свойства (фазовые сдвиги, затухание) регистрируемого поля, носит название индукционного каротажа (ИК), а в варианте зондирования — индукционного каротажного зондирования (ИКЗ). Измеряемой величиной является кажущаяся удельная электрическая проводимость (sк, gк). Единица измерения - миллисименс на метр (мСм/м).

14.1.3.2 Электромагнитный  каротаж в области частот от  нескольких сотен кГц до десятков  МГц — это высокочастотный индукционный каротаж (ВИК) и диэлектрический каротаж (ДК). Измеряемыми величинами являются характеристики электромагнитного поля (фазовые и относительные, амплитудные), которые определяются преимущественно удельной электрической проводимостью (ВИК) или диэлектрической проницаемостью пород (ДК). Расчетной величиной для ВИК служит удельная электрическая проводимость пород (s, g). Для ДК — относительная диэлектрическая проницаемость пород (e). Единица измерения e — относительная единица.

14.1.3.3 Один из вариантов реализации ВИК — зондирование с использованием изопараметрических зондов, постоянной величиной которых является произведение частоты излучения на квадрат длины измерительного зонда, а измеряемой величиной — разность фаз сигналов (напряженности магнитного поля) в сближенных измерительных катушках — ВИКИЗ.

Вариант ВИК, основанный на измерении затухания  электромагнитного поля, — электромагнитный каротаж по затуханию (ЭМКЗ).

14.1.4 Для  изучения изменения электрических  параметров пород в радиальном направлении от скважины к неизмененной части пласта применяют комплексирование разноглубинных измерительных зондов одного вида — БКЗ, ИКЗ, ВИКИЗ - либо различных видов, реализующих зонды с разной радиальной глубинностью исследований, например, — МК, БМК, БК, ИК.

14.1.4.1 Для обеспечения достоверной комплексной обработки данных измерения зондами ЭК, ЭМК необходимо проводить при постоянных параметрах промывочной жидкости и раньше других методов ГИС для уменьшения влияния эффектов, связанных с формированием глубоких зон проникновения. Недопустимы промежуточные промывки скважины между регистрацией данных ЭК, ЭМК.

14.1.4.2 Проведение ЭК, ЭМК дополняют  измерениями диаметра скважины, резистивиметрией и термометрией  и измерением удельного электрического  сопротивления проб промывочной жидкости на дневной поверхности.

14.1.5 Для всех методов ЭК, ЭМК,  за исключением ПС, выполняют  первичные, периодические и полевые  калибровки скважинных приборов. Виды, очередность и сроки калибровок типичные для всех скважинных приборов (см. раздел 6).

14.1.5.1 В процессе первичной и  периодических калибровок контролируют  фактические коэффициенты зондов, коэффициенты преобразования каналов,  основные относительные погрешности  измерений электрического сопротивления  или электропроводности в пределах  динамического диапазона измерений каждого зонда.

14.1.5.2 Для калибровок зондов МК, БМК и токовой резистивиметрии применяют стандартные образцы сопротивлений — слабоминерализованный водный раствор, размещенный в металлическом баке.

14.1.5.3 Приборы считаются исправными, если контролируемые параметры укладываются в допуски, указанные в эксплуатационной документации.

14.1.6 Приборы ЭК и ЭМК, допущенные  к измерениям, должны быть обеспечены  методическими средствами, включающими:

- зависимости между показаниями  измерительного зонда (кажущиеся электрическое сопротивление rк и электропроводность sк) и удельным сопротивлением rп пород в широких диапазонах изменения толщин исследуемых пластов, удельных сопротивлений промывочной жидкости (rс) и вмещающих пород;

- зависимости показаний rк от изменений технологических факторов — диаметров скважины, толщин глинистых и шламовых корок;

- программные или палеточные  средства, позволяющие провести  первичную обработку данных и  определить rн или sп во всем диапазоне измерений.

14.1.6.1 Основные зависимости между измеряемыми величинами и характеристиками горных пород должны базироваться на результатах физического или математического моделирования. Они должны включать:

- интерпретационные модели среды  для определения искомых параметров;

- тесты для ситуаций, отражающих  типовые геолого-технологические  условия района работ;

- примеры воспроизведения всех  этапов обработки.

Форма представления зависимостей — графическая на бумажном носителе или файловая, если обеспечена возможность  их вывода на печать.

14.1.6.2 Программные (или палеточные) средства должны:

- базироваться на интерпретационной  модели, соответствующей геолого-технологическим  условиям залегания пород, а  при совместной обработке данных  разных методов ЭК, ЭМК — на  единой модели для всех видов исследований;

- обеспечивать обработку данных  во всем диапазоне изменений rп, sп, rс, толщин пластов;

- иметь в качестве выходных  параметров величины (rп, rзп, rпз, sп) для определения которых предназначен вид исследований или совокупность видов.

14.1.7 Рекомендуемый порядок проведения  исследований определяется типами  используемых скважинных приборов  и наземных средств: являются  ли приборы цифровыми или аналоговыми  с оцифровкой данных на дневной  поверхности; имеются ли в приборах  встроенные источники нуль- и стандарт-сигналов; предусмотрена ли возможность одновременного измерения геофизической величины и регистрации нуль- и стандарт-сигналов. Общее требование — рабочие файлы должны содержать результаты:

- полевой калибровки (тестирования) приборов ЭМК в воздухе и приборов ЭК после их спуска в скважину и полного погружения в промывочную жидкость;

- регистрации нуль- и стандарт-сигналов  в исследуемом интервале до  начала измерений;

- основного измерения при подъеме прибора;

- повторного измерения;

- контрольного измерения в интервале  каверн и при входе в обсадную  колонну;

- регистрации нуль- и стандарт-сигналов  и тестирования приборов по  окончании основного и повторного  измерений.

14.1.7.1 Допускается исследование  заявленного интервала глубин  за несколько операций. В этом случае записи в отдельных интервалах глубин перекрывают, начинают и заканчивают регистрацией нуль- и стандарт- сигналов, полученные данные записывают в отдельные рабочие файлы.

Информация о работе Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах