Автор работы: Пользователь скрыл имя, 05 Января 2013 в 12:20, дипломная работа
Велико разнообразие машин и устройств, которые создаются и используются человеком. Современные машины – это сложные технические системы, состоящие из большого числа технических аппаратов, приводов различного типа, приспособлений, измерительных и решающих устройств. Все эти машины и устройства представляют собой оборудование, являющееся основой функционирования самых различных систем: машиностроительных заводов, транспорта, электростанций и т.д.
Введение
Техническое задание
1. Анализ мехатронной системы станка с ЧПУ
1.1 Общая структура и классификация систем ЧПУ
1.2 Обоснование применения программного управления оборудованием
1.3 Назначение постпроцессоров
2. Разработка системы подготовки обработки детали станка с ЧПУ
2.1 Функциональная модель системы подготовки обработки детали станка с ЧПУ
2.2 Алгоритм работы программного модуля
2.3 Выбор программных средств реализации системы
3. Технологическая реализация системы подготовки обработки детали станка с ЧПУ
3.1 Описание кодов программного модуля
3.2 Правила установки и настройки программного модуля
3.3 Тестирование и отладка программного модуля
3.4 Инструкция пользователя
4. Расчет экономической эффективности
4.1 Расчет затрат на разработку системы
4.2 Методология расчета общей стоимости владения программным продуктом
4.3 Экономический эффект
5. Обеспечение безопасности жизнедеятельности
5.1 Общие сведения о безопасности жизнедеятельности
5.2 Требования к рабочему месту инженера–программиста
5.3 Расчет естественного освещения рабочего места
5.4 Расчет искусственного освещения
Заключение
Список литературы
Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600-700 мм, но не ближе 500 мм с учетом размеров алфавитно-цифровых знаков и символов.
В процессе работы с компьютером необходимо соблюдать правильный режим труда и отдыха. В противном случае отмечаются значительное напряжение зрительного аппарата с появлением жалоб на неудовлетворенность работой, головные боли, раздражительность, нарушение сна, усталость и болезненные ощущения в глазах, в пояснице, в области шеи и руках.
Конструкция рабочего стола должна обеспечивать оптимальное размещение на рабочей поверхности используемого оборудования с учетом его количества и конструктивных особенностей, характера выполняемой работы. При этом допускается использование рабочих столов различных конструкций, отвечающих современным требованиям эргономики. Поверхность рабочего стола должна иметь коэффициент отражения 0,5-0,7.
Высота рабочей поверхности стола для взрослых пользователей должна регулироваться в пределах 680 - 800 мм, при отсутствии такой возможности высота рабочей поверхности стола должна составлять 725 мм.
Модульными размерами рабочей поверхности стола для ПЭВМ, на основании которых должны рассчитываться конструктивные размеры, следует считать: ширину 800, 1000, 1200 и 1400 мм, глубину 800 и 1000 мм при нерегулируемой его высоте, равной 725 мм.
Рабочий стол должен иметь пространство для ног высотой не менее 600 мм, шириной - не менее 500 мм, глубиной на уровне колен – не менее 450 мм и на уровне вытянутых ног - не менее 650 мм.
Конструкция рабочего стула (кресла) должна обеспечивать поддержание рациональной рабочей позы при работе на персональном компьютере, позволять изменять позу с целью снижения статического напряжения мышц шейно-плечевой области и спины для предупреждения развития утомления.
Рабочий стул (кресло) должен быть подъемно-поворотным, регулируемым по высоте и углам наклона сиденья и спинки, а также расстоянию спинки от переднего края сиденья, при этом регулировка каждого параметра должна быть независимой, легко осуществляемой и иметь надежную фиксацию.
Поверхность сиденья, спинки и других элементов стула (кресла) должна быть полумягкой, с нескользящим, слабо электризующимся и воздухопроницаемым покрытием, обеспечивающим легкую очистку от загрязнений.
Рабочее место пользователя персонального компьютера следует оборудовать подставкой для ног, имеющей ширину не менее 300 мм, глубину не менее 400 мм, регулировку по высоте в пределах до 150 мм и по углу наклона опорной поверхности подставки до 20°. Поверхность подставки должна быть рифленой и иметь по переднему краю бортик высотой 10 мм.
Клавиатуру следует располагать на поверхности стола на расстоянии 100 - 300 мм от края, обращенного к пользователю или на специальной, регулируемой по высоте рабочей поверхности, отделенной от основной столешницы.
Мощность экспозиционной дозы мягкого рентгеновского излучения в любой точке на расстоянии 0,05 м от экрана при любых положениях регулировочных устройств не должна превышать 1 мкЗв/час (100 мкР/час).
Расчет и нормирование естественного освещения производят по коэффициенту естественной освещенности "e" (КЕО) в % по формуле 5.1:
, (5.1)
где
Ев – освещенность внутри помещения, лк;
Ен – одновременная освещенность наружной и горизонтальной плоскости рассеянным светом небосвода, лк.
На предприятиях наибольшее
распространение получило естественное
боковое освещение. При таком
освещении основой расчета
(5.2)
где
So - площадь окон, м2;
Sп - площадь пола помещения, м2;
e н - нормированное значение КЕО, %;
ho - световая характеристика окна (6.5-29);
Кз - коэффициент запаса;
Кзо - коэффициент, учитывающий затемнение окон противостоящими зданиями (1,0-1,7);
to - общий коэффициент светопропускания, определяемый из СанПиН 2.2.2/2.4.1340-03;
r1 - коэффициент, учитывающий повышение КЕО за счет отражения света от поверхности помещения (1,05-1,7).
Коэффициент "Кз" определяется равным 1,5. Учитываем, что длина пола помещения "l", равняется 12 м, а ширина "b" 8,4 м. Находим площадь пола по формуле 5.3:
, (5.3)
.
Нормированное значение КЕО определяется равным 1,2 %.
Значения остальных
коэффициентов принимаются
ho = 29;
r1 = 1,2;
Кзо = 1;
to = 0,3.
При расчете получено следующее значение требуемой площади светового проема по формуле 5.2:
.
Следовательно оконный проем должен быть не менее 15 м2.
Искусственное освещение
применяют в темное и переходное
время суток, а также при недостаточном
или отсутствии естественного освещения.
В помещении применяется общее
равномерное искусственное
Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300 – 500 лк. Освещение не должно создавать бликов на поверхности экрана. Освещенность поверхности экрана не должна быть более 300 лк. Яркость бликов на экране персонального компьютера не должна превышать 40 кд/м2 и яркость потолка не должна превышать 200 кд/м2.
В качестве источников света
при искусственном освещении
следует применять
Для освещения помещений
с персональными компьютерами следует
применять светильники с
Общее освещение при
использовании люминесцентных светильников
следует выполнять в виде сплошных
или прерывистых линий
Коэффициент пульсации не должен превышать 5%.
При отсутствии светильников
с ЭПРА лампы многоламповых
Помещения, где размещаются рабочие места с персональными компьютерами, освещается лампами типа ЛБ80, световой поток которых F = 5220 лм.
Освещенность определяется по следующей формуле 5.4:
, (5.4)
где
F - световой поток каждой из ламп, лм;
E - минимальная освещенность, лк;
k - коэффициент запаса,
учитывающий запыление
Sп - площадь помещения, м2;
N - число источников света;
h - коэффициент использования светового потока;
z - коэффициент неравномерности освещения;
y - коэффициент затенения.
Определим данные для расчета. Коэффициент "k" для помещений освещаемых люминесцентными лампами, и при условии чистки светильников не реже двух раз в год берется равным:
k = 1,4-1,5.
При оптимальном расположении светильников коэффициент неравномерности равен:
z = 1,1-1,2.
Коэффициент затенения "y"
вводится в расчет для помещений
с фиксированным положением работающих,
а также при наличии
у = 0,8-0,9.
Коэффициент использования светового потока "h" зависит от типа светильника, коэффициента отражения светового потока от стен, потолка, пола, а также геометрических размеров помещения и высоты подвеса светильников, что учитывается одной комплексной характеристикой - индексом помещения. Показатель помещения определяется по формуле 5.5:
, (5.5)
где
h - высота подвеса светильников над рабочей поверхностью, м;
l - ширина помещения, м;
b - длина помещения, м.
Тогда индекс помещения по формуле (5.5) получается равным:
По найденному показателю помещения "i" и коэффициентам отражения потолка и стен, определяем коэффициент использования светового потока (под которым понимается отношение светового потока, падающего на рабочую поверхность, к световому потоку источника света). Для нашего случая "h" равняется 0,22.
Тогда освещенность по формуле (5.4) равна:
лк.
Расчет показывает, что освещенность в помещении, где размещаются рабочие места с персональными компьютеров удовлетворяет требованиям, так как нормальная минимальная освещенность должна составлять 400лк.
Заключение
Данный проект был направлен на автоматизацию проектных работ по программированию станка с ЧПУ Walter CIP6. Были проведены исследовательские работы по изучению состояния дел в этой сфере, изучены предложения других компаний, был создан программный продукт, посчитаны экономические затраты на его создание и сформулированы требования по безопасности жизнедеятельности.
В процессе проектирования был получен программный модуль, отвечающий всем заявленным требованиям. Этот модуль может проводить сложные математические расчеты неявным образом, отображать в графическом представлении введенные исходные данные. В результате использования модуля можно получить готовую управляющую программу для системы ЧПУ.
Для упрощения задачи
создания модуля, в нем применен
принцип внешнего управления работой
пакета 3D моделирования. За счет этого
была реализована возможность
Особое значение имеет тот факт, что происходит уход от традиционных бумажных носителей на всех этапах проектирования и внедрения управляющей программы. Достигается это за счет того, что такое же программное обеспечение может быть установлено на рабочем месте станочника, и используя его, рабочий может получить всю необходимую информацию о наладке станка в более удобном виде, чем это может быть представлено на бумажной карте наладки.
Данный программный модуль предназначен для применения в группе шлифовальных станков с ЧПУ Walter, оснащенными 4 – 6 осями. С помощью этого модуля могут быть смоделированы большинство традиционных осевых инструментов, которые применяются в производстве, а также может быть осуществлена переточка затупившегося инструмента.
Возможность имитации обработки позволяет отказаться от применения пробной детали, которая предназначена для отладки программы обработки и чаще всего оказывается испорченной.
Также был произведен анализ условий труда программиста, который должен работать в этом приложении. Были описаны параметры рабочего места и рассчитаны нормы освещенности рабочего помещения. В частности были рассчитаны такие параметры как площадь оконного проема и количество ламп искусственного освещения, необходимых для освещения данной комнаты при работе с персональным компьютером.
Был произведен экономический расчет стоимости разработки данного программного модуля. В нем были учтены стоимость компьютера и периферийного оборудования, применяемых в ходе разработки, а так же стоимость отладки и внедрения программного модуля. Анализ аналогов других фирм показал, что данный программный модуль может выполнять все те же действия, что и аналоги, но его стоимость на 239828,86 рублей ниже чем у аналогов.
Список литературы
1. Автоматизация проектно-конструкторских работ и технологической подготовки производства в машиностроении. Т. 1/Под ред. О. И. Семенкова.- Минск: Высшая школа, 2005.
2. Волков Д.И., Скляренко В.К.. Экономика предприятия. Курс лекций.- М.: Инфра-м, 2004.
3. Гольдштейн А.И., Молочник В.И. О внутренней структуре постпроцессоров. — В кн.: Повышение эффективности использования станков с ЧПУ. - Киев: Знание, 2006.
4. ГОСТ 886-77 "Свёрла спиральные с цилиндрическим хвостовиком. Длинная серия".
5. ГОСТ 2092-77 "Свёрла спиральные удлиненные с коническим хвостовиком".
6. ГОСТ 10079-71 "Развертки конические с коническим хвостовиком".
7. ГОСТ 14952-75 "Свёрла центровочные комбинированные".