Автор работы: Пользователь скрыл имя, 22 Июня 2013 в 21:09, курсовая работа
При однократном испарении взаимно растворимых жидкостей и последующей конденсации паров получают две фракции: легкую, в которой содержится больше низкокипящих фракций, и тяжелую, в которой содержится меньше низкокипящих фракций, чем в исходном сырье. Следовательно, при перегонке происходит обогащение одной фазы низкокипящими, а другой — высококипящими компонентами. Однако достичь требуемого разделения компонентов нефти и получить конечные продукты, кипящие в заданных температурных интервалах, с помощью перегонки нельзя. Поэтому после однократного испарения нефтяные пары подвергаются ректификации.
Аннотация. 2
The summary 2
1. Ректификация 4
1.1. Перегонка нефти до мазута и гудрона 6
2. Технологические схемы установок первичной перегонки нефти 7
2.1. Типы установок 7
2.2. Схема установки 11
3. Основная аппаратура установок первичной перегонки нефти 13
3.1. Теплообменная аппаратура 13
3.2. Трубчатые печи 17
3.3. Ректификационные колонны 22
4. Технологическая схема установки АТ 29
4.1. Описание атмосферной колонны 29
5. Технологический расчёт атмосферной колонны 30
5.1. Материальный баланс 30
5.2. Давление и температура в колонне 35
5.3. Доля отгона сырья на входе в колонну 41
5.4. Тепловой баланс колонны 44
5.5. Внутренние материальные потоки в колонне 45
5.6. Диаметр колонны 49
5.7. Уточнение температур вывода боковых фракций 51
5.8. Расчёт стриппинг-секции 56
6. Библиографический список 61
В зависимости от внутреннего устройства колонны делятся на тарельчатые и насадочные. На большинстве технологических установок современного нефтеперерабатывающего завода применяются только тарельчатые колонны.
Существуют ректификационные тарелки различных типов— колпачковые (рис. 1.13), бесколпачковые, струйно-направленные и др.
Колпачковая тарелка представляет собой металлический диск, в котором имеется множество отверстий для прохода паров. По периметру отверстий закреплены бортики определенной высоты, называемые стаканами, благодаря которым на тарелке поддерживается определенный слой жидкости. Сверху стаканы накрываются колпачками. Между верхним срезом стакана и колпачком имеется зазор для прохода паров, поступающих с нижележащей тарелки. При работе колпачки погружены в слой жидкости, и вследствие этого образуется гидравлический затвор, через который барботируют пары.
Уровень жидкости на тарелках поддерживается сливными перегородками (сливными карманами), нижняя часть которых доходит до следующей тарелки. Избыток жидкости по сливным карманам спускается на нижележащую тарелку. Положение колпачков можно регулировать, изменяя размер зазора между колпачком и верхним срезом стакана. Очень важно, чтобы тарелки размещались в колонне строго горизонтально и чтобы все колпачки были одинаково погружены в жидкость на тарелке. Если эти требования не выполнены, то в какой-либо части тарелки толщина слоя жидкости будет меньше. Через эту часть тарелки начнет проходить большее количество жидкости, и многие колпачки на остальной части тарелки перестанут работать.
Наиболее распространены колпачковые тарелки желобчатого типа, тарелки с S-образными элементами, с круглыми колпачками и тарелки клапанного типа.
Желобчатые тарелки имеют простую конструкцию и весьма легко монтируются (рис. 1.14). Тарелка представляет собой прямоугольник или квадрат, вписанный в поперечное сечение колонны. Один из сегментов, отделяемых этим прямоугольником, служит сливным устройством данной тарелки, другой — сливным устройством вышележащей. Два сегмента тарелки — глухие.
Тарелка состоит из нескольких желобов, прикрепленных к опорным уголкам. Над желобами располагаются колпачки, монтируемые на нужной высоте. Жидкость движется по тарелке вдоль колпачков. Основной недостаток желобчатых тарелок заключается в малой площади барботажа (до 30% от площади тарелки), что способствует увеличению скорости паров и уносу флегмы.
В отличие от желобчатых тарелок в тарелках с S-образными элементами (рис. 1.15.) жидкость, направляясь к сливному устройству, движется поперек колпачков, а сами колпачки представляют одно целое с желобом. Каждый S-образный элемент состоит из колпачковой и желобчатой части. При сборке их располагают таким образом, чтобы колпачковая часть одного элемента перекрывала желобчатую часть другого, образуя гидравлический затвор.
Тарелки из S-образных элементов предназначены для колонн, работающих при атмосферном или невысоком давлении, для них характерна устойчивая равномерная работа при изменении нагрузок. Производительность тарелок на 20% выше, чем желобчатых.
Еще более эффективны для колонн, работающих при переменных нагрузках по пару и жидкости, а также для колонн, в которых требуется добиться повышенной четкости разделения, клапанные прямоточные тарелки. Основной элемент такой тарелки — клапан (рис. 1.16), который под действием паров приподнимается над полотном тарелки на различную высоту. В отличие от прочих колпачковых тарелок, работающих в статичном режиме, для клапанных тарелок характерен динамический, переменный режим работы.
Подвижные клапаны в зависимости от паровой нагрузки поднимаются или опускаются, регулируя площадь свободного сечения тарелки. Благодаря такой конструкции, в широком пределе нагрузок, определяемом возможной длиной хода клапана, скорость паров существенно не меняется.
Из бесколпачковых тарелок применение в последние годы нашли решетчатые тарелки провального типа и сетчатые тарелки с отбойными элементами.
Основным показателем для
На установках первичной перегонки нефть требуется разделить на большое количество фракций. Поскольку одна обычная ректификационная колонна может обеспечить разделение смеси только на две фракции, на современных перегонных установках широкое распространение получили сложные колонны, в которых как бы совмещается несколько простых колонн (рис. 1.17).
Нагретая в печи нефть поступает в среднюю часть секции 1 и разделяется на жидкую и паровую фазы. Жидкая фаза опускается по тарелкам нижней (отгонной) части секции и при этом из нее отгоняются легкие фракции. Для улучшения условий отгонки легких фракций в нижнюю часть отгонной секции вводится водяной пар.
Паровая фаза поднимается по тарелкам верхней концентрационной части секции 1, постепенно облегчается по составу и затем поступает в секцию 2. Секция 1 представляет собой полную ректификационную колонну, остатком которой является мазут, а дистиллятом — смесь бензиновых, керосиновых, дизельных фракций. Эта смесь служит сырьем секции 2. В секции 2 от смеси отделяется тяжелая дизельная фракция (300—350°С), которая частично перетекает в секцию 1, являясь ее орошением, а частично поступает в отдельно расположенную отгонную часть. Здесь тяжелая дизельная фракция дополнительно ректифицируется. Для облегчения удаления легких компонентов в нижнюю часть отгонной секции также вводится водяной пар, как и в нижнюю часть основной колонны.
В секции 8 отделяется легкая дизельная фракция, а в секции 4 — керосиновая. Как и секция 2, секции 3 и 4 представляют концентрационные части простых колонн. Отгонные части этих колонн также выделены в самостоятельные колонны. Готовые продукты — керосиновая, легкая и тяжелая дизельная фракции — отбираются с низа отгонных секций, а отогнанные легкие фракции совместно с водяным паром отводятся в основную колонну. С верха основной колонны уходит смесь водяного пара и паров самого легкого дистиллята — бензинового.
При сооружении сложных колонн расходуется гораздо меньше металла, чем для нескольких простых колонн, упрощается обслуживание, уменьшается количество коммуникаций. Сложные колонны применяются в тех случаях, когда не требуется особенно высокой четкости разделения продуктов. Для четкого и сверхчеткого фракционирования (при вторичной перегонке бензинов, газоразделении) обычно устанавливается несколько простых ректификационных колонн, в каждой из которых выделяется один или два целевых компонента.
Способы создания орошения. Чтобы обеспечить нормальное проведение процесса ректификации, в колонне необходимо создать поток орошения (флегмы). В промышленной практике применяются три основных способа создания орошения: с применением поверхностного парциального конденсатора; холодным, испаряющимся (острым) орошением; циркуляционным, неиспаряющимся орошением.
Схемы создания орошения приводятся на рис. 1.18. Парциальный конденсатор представляет собой трубчатый теплообменный аппарат, устанавливаемый непосредственно на колонне. В трубки аппарата подается вода или холодное сырье. Конденсат, образующийся в межтрубном пространстве, стекает обратно в колонну в виде флегмы.
При съеме тепла острым орошением на верх колонны подается насосом холодная жидкость, соответствующая по составу ректификату. Эта жидкость, контактируя на верхней тарелке с парами, поднимающимися с нижних тарелок, испаряется. Поднимающиеся снизу пары охлаждаются, частично конденсируются. Образовавшийся конденсат стекает на следующую тарелку в качестве орошения. Пары орошения и испарившегося на верхней тарелке продукта уходят в конденсатор-холодильник 3. После конденсации продукт собирается в емкости 4, откуда ректификат отводится в качестве товарного продукта, а орошение вновь возвращается в колонну.
С помощью циркулирующего, неиспаряющегося орошения тепло отводится как из верхней части колонны, так и из промежуточных сечений. Схема съема тепла циркулирующим орошением следующая: жидкость забирается насосом 5 с какой-либо тарелки, прокачивается через холодильник или теплообменник 6 и возвращается в колонну на вышележащую тарелку.
Сравнивая различные методы создания орошения, следует отметить, что применение парциального конденсатора связано с большими неудобствами. При высокой производительности установок размеры парциальных конденсаторов растут, и становится трудно размещать их над колонной. Кроме того, возникают сложности в регулировании температуры колонны, так как быстро изменить количество подаваемого из парциального конденсатора орошения невозможно.
При отводе тепла острым орошением конденсатор можно размещать на любой высоте, сооружение и эксплуатация конденсаторов в этом случае много проще. Однако применение острого орошения требует установки специальных насосов для подачи орошения и затраты электроэнергии.
На современных установках по перегонке нефти используются комбинированные схемы орошения. Так, в сложных атмосферных колоннах сочетается острое и циркулирующее орошение. В сложных колоннах вес ректификата при переходе от первой (нижней) простой колонны (секции) к верхней сокращается, а вес флегмы (если в колонну подается только острое орошение) должен в той же последовательности увеличиваться. Дело в том, что через секции, расположенные выше, должно проходить такое количество флегмы, которого было бы достаточно не только для данной колонны, но и для колонн, расположенных ниже. Таким образом, вышележащие секции оказываются перегруженными жидкостным потоком, величина которого значительно превышает необходимое для данной секции орошение. При переходе на комбинированную схему в виде острого орошения вводится только то количество флегмы, которое необходимо для верхней секции колонны. В остальных секциях флегма создается с помощью циркулирующего орошения, которое забирается с нижележащей тарелки соответствующей секции, охлаждается и подается на верхнюю тарелку этой секции. В атмосферных колоннах современных установок первичной перегонки имеется 2—3 циркулирующих орошения. Число промежуточных орошений, как правило, на единицу меньше числа отводимых боковых погонов.
Внедрение промежуточных циркулирующих орошений позволяет улучшить условия регенерации тепла на установке, так как температура отводимого циркулирующего орошения выше температуры острого орошения и дает возможность значительно разгрузить верхнюю часть атмосферной колонны и конденсаторы-холодильники.
Рассмотрим схему установки с двухкратным испарением нефти (рис.1). Эта схема технологически гибкая и работоспособная при значительном изменении содержания бензиновых фракций и растворенных газов. Коррозионноактивные вещества удаляются в первой колонне и основная сложная колонна защищена от их воздействия. Благодаря предварительному удалению в отбензинивающей колонне растворенных газов и легкого бензина в змеевиках печи, в теплообменниках не создается большого давления и основная колонна не перегружается по парам.
Атмосферная колонна является сложной колонной, состоящей из четырех простых колонн (рис.3). Избыточное тепло в колонне снимается сверху колонны с помощью острого испаряющегося орошения и по высоте колонны тремя промежуточными циркуляционными орошениями. Количество циркуляционных орошений рекомендуется принимать равным количеству боковых фракций. На основании литературных данных примем следующее число тарелок в концентрационной части колонны: в секции бензина 7, в секции керосина 8, в секции зимнего дизтоплива 8 и в секции летнего дизтоплива 6. В секциях циркуляционных орошений примем по 2 тарелки. Таким образом, при наличии трех циркуляционных орошений в колонне общее число тарелок в концентрационной части колонны будет 35. В отгонной части колонны и в стриппинг-секциях примем по 6 тарелок.
Составим материальный баланс установки мощностью 6 млн т в год по нефти, разгонка которой представлена в табл.2. В колонне К-1 предусмотрим отбор фракции легкого бензина 28-85°С, в основной сложной колонне следующих фракций: тяжелого бензина 85-180°С, керосина 180-240°С, зимнего дизтоплива 240-290°С, летнего дизтоплива 290-350°С и мазута 350-К.К. По данным табл.2 строим кривую ИТК нефти (рис.20), определяем по ней потенциальное содержание отбираемых фракций. Далее принимаем на основании литературных данных долю отбора фракций и находим их фактический отбор. Весь недобор фракций приплюсовываем к остатку - мазуту. Потери примем в количестве 1% масс. Результаты расчетов приведены в табл.1.
Отбор фракций из нефти
Фракции |
Потенциальное содержание в нефти, % масс. |
Доля отбора от потенциала |
Фактический отбор, % масс. |
Газы до С4 |
1,38 |
1,00 |
1,38 |
28 – 85°С |
6,09 |
0,99 |
6,03 |
85 – 180°С |
19,05 |
0,99 |
18,86 |
180 – 240°С |
13,45 |
0,98 |
13,18 |
240 – 290°С |
10,86 |
0,95 |
10,32 |
290 – 350°С |
12,31 |
0,90 |
11,08 |
350 – К.К. |
36,86 |
1,035 |
38,15 |
Потери |
— |
— |
1,0 |
Итого |
100,00 |
— |
100,00 |
Примем число рабочих дней в году 340 и составим материальный баланс установки, а также отбензинивающей колонны К-1 и атмосферной колоннны К-2 (табл.3,4,5).
Принципиальная схема
Рис. 19
Информация о работе Технологический расчет атмосферной колонны установок перегонки нефти