Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 19:26, курсовая работа
В курсе лекций изложены основные вопросы дисциплины «Управление техническими системами. Приведены основные принципы теории автоматического управления, законы регулирования и характеристики систем. Рассмотрена классификация и виды датчиков, применяемых в различных системах управления. Освещены общие вопросы автоматического регулирования станков с программным управлением. Описаны схемы управления технологическим оборудованием.
Еще одним примером является САУ, предназначенная для регулирования уровня жидкости в парогенераторах и конденсаторах. Принципиальная схема такой системы представлена на рисунке 3.
Рисунок 3 - Принципиальная схема автоматического регулирования уровня жидкости
Уровень жидкости h(t) завит от разности двух величин: ее притока Gп и расхода Gр. Если Gп>Gр, уровень растет, и наоборот, при Gп<Gр уровень уменьшается. Приток Gп можно изменять посредством регулирующего клапана (РК), который управляется электроприводом (П). Сигнал, соответствующий действительному уровню h(t), измеряется уровнемером (УМ) и сравнивается с заданным уровнем hз.
В зависимости от значения и знака сигнала рассогласования ε(t) регулятор посредством электропривода увеличивает (при ε>0) или уменьшает (при ε<0) приток жидкости Gп, поддерживая равенство между Gп и Gр при заданном уровне hз. Изменение расхода Gр нарушает баланс в схеме, т.е. Gр является возмущающим сигналом.
Для повышения точности регулирования наряду с сигналом ε(t) используется сигнал Gп, который обеспечивает местную ОС, или так называемое комбинированное регулирование.
Выходной сигнал некоторых расходомеров (РМ) пропорционален квадрату расхода жидкости, поэтому цепи измерения их расходов содержат блоки извлечения корня (БИК).
Можно записать: сигнал на выходе системы (заданное воздействие) y(t)= hз; сигнал на выходе системы (уровень жидкости) x(t) = h(t); сигнал возмущения (расхода жидкости) u(t)= Gр(t).
1. Классификация
систем автоматического
2. Законы автоматического управления.
3. Системы автоматизированного управления производством
1. Существует большое разнообразие систем автоматического управления. Чтобы как-то разобраться в этом многообразии проводится классификация САУ. Существует несколько признаков, по которым проводится классификация САУ. На рисунке 4 приведена примерная классификация САУ.
Рисунок 4 - Классификация САУ
Основные признаки классификации САУ:
По назначению, то есть характеру изменения задающего воздействия, различают:
Стабилизирующая АСУ – система, алгоритм функционирования которой содержит предписание поддерживать значение управляемой величины постоянным:
x(t) ≈ xз = const
Знак ≈ означает, что управляемая величина поддерживается на заданном уровне с некоторой ошибкой.
Стабилизирующие АСУ самые распространенные в промышленной автоматике. Их применяют для стабилизации различных физических величин, характеризующих состояние технологических объектов.
Программная АСУ – система, алгоритм функционирования которой содержит предписание изменять управляемую величину в соответствии с заранее заданной функцией времени:
x(t) ≈ xз(t) = fп(t)
Следящая АСУ – система, алгоритм функционирования которой содержит предписание изменять управляемую величину в соответствии с заранее неизвестной функцией времени:
x(t) ≈ xз(t) = fс(t)
В стабилизирующих, программных и следящих АСУ цель управления заключается в обеспечении равенства или близости управляемой величины x(t) к ее заданному значению xз(t).
Такое управление, осуществляемое с целью поддержания x(t) ≈ xз(t), называется регулированием. Управляющее устройство, осуществляющее регулирование, называется регулятором, а сама система – системой регулирования.
По принципу управления различают:
Разомкнутая АСУ – система, в которой не осуществляется контроль управляемой величины, т.е. входными воздействиями ее управляющего устройства являются только внешние (задающее и возмущающее) воздействия.
Рисунок 5 - Функциональные схемы САУ с разомкнутой (а, б), замкнутой (в) и комбинированной (г) цепями воздействий
Разомкнутые АСУ можно разделить в свою очередь на два типа:
• осуществляющие управление в соответствии с изменением только задающего воздействия (Рисунок 5, а);
• осуществляющие управление в соответствии с изменением и задающего и возмущающего воздействий (Рисунок 5, б).
Алгоритм управления разомкнутой системы первого типа имеет вид
y(t) = Ay [ xз(t) ]
Чаще всего оператор Аy устанавливает пропорциональную связь между задающим воздействием xз(t) и управляющим воздействием y(t), а сама система в этом случае осуществляет программное управление.
Системы первого типа работают эффективно лишь при условии, если влияние возмущений на управляемую величину невелико и все элементы разомкнутой цепи обладают достаточно стабильными характеристиками.
В системах управления по возмущению (Рисунок 5, б) управляющее воздействие зависит от возмущающего и задающего воздействий:
y(t) = Ay [ xз(t), z(t) ]
В большинстве случаев
Преимущество разомкнутых систем управления по возмущению – их быстродействие: они компенсируют влияние возмущения еще до того, как оно проявится на выходе объекта. Но применимы эти системы лишь в том случае, если на управляемую величину действуют одно или два возмущения и есть возможность измерения этих возмущений. Поэтому если эти величины действуют на объект как возмущения, то обычно стремятся стабилизировать их при помощи дополнительной системы или ввести в основную систему управления данным объектом сигнал, пропорциональный такому воздействию.
Замкнутая АСУ (АСУ с обратной связью) – система, в которой входными воздействиями ее управляющего устройства являются как внешнее (задающее), так и внутреннее (контрольное) воздействия.
Управляющее воздействие в замкнутой системе (Рисунок 5, в) формируется в большинстве случаев в зависимости от величины и знака отклонения истинного значения управляемой величины от ее заданного значения:
y(t) = Ay [ ε(t) ],
где ε(t) = xз(t) - x (t) – сигнал ошибки (сигнал рассогласования).
Замкнутую систему называют часто системой управления по отклонению. В замкнутой системе контролируется непосредственно управляемая величина и тем самым при выработке управляющего воздействия учитывается действие всех возмущений, влияющих на управляемую величину. В этом заключается преимущество замкнутых систем.
Комбинированная АСУ – система, в которой входными воздействиями ее управляющего устройства являются как внешние (задающее и возмущающее), так и внутреннее (контрольное) воздействия.
В комбинированных системах (Рисунок 5, г) имеется две цепи воздействий – по заданию и по возмущению, и управляющее воздействие формируется согласно оператору.
y(t) = Aз [ ε(t) ] + Aв [ z(t) ]
Эффективность работы комбинированной АСУ всегда больше, чем у порознь функционирующих замкнутой или разомкнутой систем.
По характеру используемых для управления сигналов различают:
1) непрерывные или аналоговые системы автоматического управления;
Непрерывная АСУ – АСУ, в которой действуют непрерывные (аналоговые), определенные в каждый момент времени сигналы.
Дискретная АСУ - АСУ, в которой действует хотя бы один дискретный, определенный только в некоторые моменты времени сигнал.
К дискретным АСУ относятся, например, АСУ, имеющие в своем составе цифровые вычислительные устройства: микропроцессоры, контроллеры, электронные вычислительные машины.
По характеру используемой информации об условиях работы различают:
По характеру математических соотношений различают:
1) линейные системы автоматического управления, для которых справедлив принцип суперпозиции;
2) нелинейные системы автоматического управления, для которых принцип суперпозиции в общем случае не справедлив.
Линейные АСУ – АСУ, все элементы которых описываются линейными дифференциальными и/или алгебраическими уравнениями.
Нелинейные АСУ – АСУ, хотя бы один элемент которой описывается нелинейными дифференциальными и/или алгебраическими уравнениями.
Как линейные, так и нелинейные САУ могут подразделяться на аналоговые, дискретные и дискретно-непрерывные, стационарные и нестационарные. При этом стационарной системой называется САУ, параметры элементов которой не зависят от времени работы системы. Для нестационарной САУ это условие не выполняется.
Стационарные и нестационарные САУ могут быть с сосредоточенными и распределенными параметрами.
По количеству выходных координат объекта управления различают:
Последние делятся на системы связанного и несвязанного управления. В системах связанного управления отдельные управляющие устройства соединены между собой внешними связями. Входящая в состав многомерной системы отдельная САУ называется автономной, если управляемая ею выходная переменная не зависит от значения остальных управляемых величин.
По способу выработки управляющего воздействия замкнутые АСУ разделяют на: • беспоисковые;
• поисковые.
Беспоисковая АСУ – АСУ, в которой управляющее воздействие вырабатывается в результате сравнения истинного значения управляемой величины с заданным значением.
Такие системы применяют для управления сравнительно несложными объектами, характеристики которых достаточно хорошо изучены и для которых заранее известно в каком направлении и на сколько нужно изменить управляющее воздействие при определенном отклонении управляемой величины от заданного значения.
Поисковая АСУ – АСУ, в которой управляющее воздействие формируется с помощью пробных управляющих воздействий и путем анализа результатов этих пробных воздействий.
Такую процедуру поиска правильного управляющего воздействия приходится применять в тех случаях, когда характеристики объекта управления меняются или известны не полностью; например, известен вид зависимости управляемой величины от управляющего воздействия, но неизвестны числовые значения параметров этой зависимости.
Поэтому поисковые системы называют еще системами с неполной информацией. Наиболее часто принцип автоматического поиска управляющих воздействий применяют для управления объектами, характеристики которых имеют экстремальный характер. Целью управления является отыскание и поддержание управляющих воздействий, соответствующих экстремальному значению управляемой величины. Такие поисковые системы называют экстремальными (оптимальными) системами.
Особый класс АСУ образуют системы, которые способны автоматически приспосабливаться к изменению внешних условий и свойств объекта управления, обеспечивая при этом необходимое качество управления путем изменения структуры и параметров управляющего устройства. Они называются адаптивными (самоприспосабливающимися) системами. В составе адаптивной АСУ имеется дополнительное автоматическое устройство, которое меняет алгоритм управления основного управляющего устройства таким образом, чтобы АСУ в целом осуществляла заданный алгоритм функционирования, который предписывает обычно максимизацию показателя качества. Поэтому адаптивные АСУ являются, как правило, еще и оптимальными.
По степени зависимости управляемой величины в установившемся режиме от величины возмущающего воздействия АСУ делят на:
• статические;
• астатические.
Статическая АСУ – АСУ, в которой имеется зависимость управляемой величины в установившемся режиме от величины возмущающего воздействия.
Астатическая АСУ – АСУ, в которой отсутствует зависимость управляемой величины в установившемся режиме от величины возмущающего воздействия.
В зависимости от принадлежности источника энергии, при помощи которого создается управляющее воздействие, различают АСУ:
• прямого действия;
• непрямого действия.
АСУ прямого действия – АСУ, в которой управляющее воздействие создается при помощи энергии объекта управления.