Автор работы: Пользователь скрыл имя, 07 Января 2013 в 14:23, реферат
Понятие энергии – не только физическое или естественнонаучного, а также и техническое. Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория.
Введение
1.Поиск новых видов энергии…………………………………………………….. 3
1.1. Источники развития энергетики …………………………………………….. 5
1.2. Необходимость энергетических ресурсов………………………………...… 7
2. Альтернативные возобновляемые источники энергии…………………….… 9
2.1. Энергия ветра…………………………………………………………………. 9
2.1.1. Аккумулирование ветровой энергии ……………………………………...11
2.2. Гидроэнергия. ………………………………………………………………....11
2.3. Геотермальная энергия ……………………………………………………….13
2.3.1. Гидротермальные системы ………………………………………………...14
2.3.2.Горячие системы вулканического происхождения ……………………….14
2.3.3. Системы с высоким тепловым потоком …………………………..............15
2.4. Энергия мирового океана …………………………………………………….15
2.5.Энергия приливов и отливов. ………………………………………………...16
2.6. Энергия морских течений ……………………………………………………17
2.7. Солнечная энергия ……………………………………………………………18
3. Атомная энергия…………………………………………………………………21
4.Водородная энергетика ………………………………………………………….23
4.1. Перспективные методы производства водорода ……………………………24
4.2.Применение водорода …………………………………………………………25
Заключение……………………………………………………………………….....25
Список литературы ………………………………………………………………...
Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.
Сооружаются ветроэлектрические станции
преимущественно постоянного
В небольших масштабах
Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт· ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.
Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.
Сейчас созданы самые
Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) в штате Огайо. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об /мин.
В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто r какую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.
2.1.1. Аккумулирование ветряной энергии.
При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.
Американский ученый Уильям Херонимус считает, что производить водород за счет энергии ветра лучше всего па море. С этой целью он предлагает установить у берега высокие мачты с ветродвигателями диаметром 60 м и генераторами. 13 тысяч таких установок могли бы разместиться вдоль побережья Новой Англии (северо-восток США) и “ловить” преобладающие восточные ветры. Некоторые агрегаты будут закреплены на дне мелкого моря, другие будут плавать на его поверхности. Постоянный ток от ветроэлектрических генераторов будет питать расположенные на дне электролизные установки, откуда водород будет по подводному трубопроводу подаваться на сушу.
2.2.Гидроэнергия
Многие тысячелетия верно
Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энергию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже пользовались водяным колесом в виде вала с лопатками (рис. 3). Суть устройства сводилась к следующему. Поток воды, отведенный из ручья или речки, давит на лопатки, передавая им свою кинетическую энергию. Лопатки приходят в движение, а поскольку они жестко скреплены с палом, вал вращается. С ним в свою очередь скреплен мельничный жернов, который вместе с валом вращается по отношению к неподвижному нижнему жернову. Именно так работали первые “механизированные” мельницы для зерна. Но их сооружали только в горных районах, где есть речки и ручьи с большим перепадом и сильным напором. На медленно текущих потоках водяные колеса с горизонтально размещенными лопатками малоэффективны.
Шагом вперед было водяное колесо Витрувия (1 в. н. э.), схема которого показана на рис. 4. Это вертикальное колесо с большими лопатками и горизонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на котором сидит мельничный жернов. Подобные мельницы и сегодня можно встретить на Малом Дунае; они перемалывают в час до 200 кг зерна.
Почти полторы тысячи лет после
распада Римской империи
Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и самые древние из них – описанные выше водяные колеса. Различают колеса с верхним, средним и нижним подводом воды.
В современной гидроэлектростанци
Гидроэлектростанции классифицируются по мощности на мелкие (с установленной электрической мощностью до 0,2 МВт), малые (до 2 МВт), средние (до 20 МВт) и крупные (свыше 20 МВт). Второй критерий, по которому разделяются гидроэлектростанции, – напор. Различают низконапорные ГЭС (напор до 10 м), среднего напора (до 100 м) и высоконапорные (свыше 100 м). В редких случаях плотины высоконапорных ГЭС достигают высоты 240 м. Такие плотины сосредоточивают перед турбинами водную энергию, накапливая воду и подним ая ее у ровень.
Затраты на строительство ГЭС велики, но они компенсируются тем, что не приходится платить (во всяком случае, в явной форме) за источник энергии – воду. Мощность современных ГЭС, спроектированных на высоком инженерном уровне, превышает 100 МВт, а К.П.Д. составляет 95% (во дяные колеса имеют К.П.Д. 50–85%). Такая мощность достигается при довольно малых скоростях вращения ротора (порядка 100 об / мин ), поэтому современные гидротурбины поражают своими размерами. Например, рабочее колесо турбины Волжской ГЭС им. В. И. Ленина имеет высоту около 10 м и весит 420 т.
Турбина – энергетически очень выгодная машина, потому что вода легко и просто меняет поступательное движение на вращательное. Тот же принцип часто используют и в машинах, которые внешне совсем не похожи на водяное колесо (если на лопатки воздействует пар, то речь идет о паровой турбине).
Преимущества
Поэтому в начале XX века было построено
всего несколько
Уже в историческом плане ГОЭЛРО
предусматривалось
Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными . Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.
2.3. Геотермальная энергия
Земля, эта маленькая зеленая планета, –н аш общий дом, из которого мы пока не можем, да и не хотим, уходить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уютной и живительной зеленью. Но эта прекрасная и спокойная планета порой приходит в ярость, и тогда с ней шутки плохи – она способна уничтожить все, что милостиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные территории вместе с постройками и посевами.
Но все это мелочи по сравнению с извержением проснувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.
Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится – нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.
Энергетика земли –