Гемодинамика

Автор работы: Пользователь скрыл имя, 01 Декабря 2015 в 15:42, реферат

Описание работы

Гемодинамика — движение крови по сосудам, возникающее вследствие разности гидростатического давления в различных участках кровеносной системы (кровь движется из области высокого давления в область низкого). Зависит от сопротивления току крови стенок сосудов и вязкости самой крови. О гемодинамике судят по минутному объёму крови.

Содержание работы

1. Основные закономерности гемодинамики стр.4
1.1 Равенство объёмов кровотока стр.4
1.2 Движущая сила кровотока стр.4
1.3 Сопротивление в кровеносной системе стр.4
2. Функциональная классификация сосудов стр.7
2.1 Амортизирующие сосуды стр.7
2.2 Сосуды распределения стр.7
2.3 Сосуды сопротивления стр.7
2.4 Обменные сосуды (капилляры) стр.8
2.5 Шунтирующие сосуды стр.8
2.6 Емкостные (аккумулирующие) сосуды стр.9
2.7 Сосуды возврата крови в сердце стр.10
3. Основные параметры сердечно-сосудистой системы стр.10
3.1 Поперечное сечение сосудов стр.10
3.2 Объём крови в кровеносной системе стр.11
3.3 Объёмная скорость кровотока стр.11
3.4 Линейная скорость кровотока стр.12
4. Движение крови по артериям стр.13
4.1 Энергия, обеспечивающая движение крови по сосудам стр.13
4.2 Характеристика артериального давления крови стр.14
4.3 Методы измерения кровяного давления стр.14
4.4 Скорость распространения пульсовой волны стр.15
4.5 Артериальный пульс стр.15
5. Микроциркуляция стр.16
5.1 Транскапиллярный обмен веществ стр.16
5.2 Скорость кровотока стр.18
6. Движение крови по венам стр.19
6.1 Давление крови в венах стр.19
6.2 Причины движения крови по венам стр.19
6.3 Линейная скорость кровотока стр.21
7. Особенности кровотока в органах стр.21
7.1 Лёгкие стр.21
7.2 Коронарные сосуды стр.22
7.3 Головной мозг стр.23
8. Литература стр.25

Файлы: 1 файл

гемодинамика.docx

— 138.47 Кб (Скачать файл)

 

Особенности кровотока в органах

Системное артериальное давление (АД), т.е. давление в крупных артериях большого круга, обеспечивает одинаковую возможность кровотока в любом органе. Однако в реальной действительности интенсивность кровотока в различных органах весьма вариабельна и может изменяться в соответствии с запросами метаболизма в широком диапазоне, который также различен.

 

Лёгкие

В лёгких выделяют две сосудистые системы: основная из них — это малый круг кровообращения, в нём осуществляется газообмен с альвеолярным воздухом, вторая является частью системы большого круга кровообращения и предназначена для кровоснабжения лёгочной ткани; через эту систему сосудов проходит всего 1—2 % минутного выброса сердца. Венозная кровь из неё частично сбрасывается в вены малого круга.

Малый круг кровообращения является системой низкого давления: систолическое давление в лёгочной артерии составляет 25—35 мм рт.ст., диастолическое — около 10 мм рт.ст., среднее давление — 13—15 мм рт.ст. Низкое АД объясняется высокой растяжимостью сосудов, широким их просветом, меньшей длиной и поэтому малым сопротивлением току крови. Артерии малого круга тонкостенны, им присущи выраженные эластические свойства. Гладкомышечные волокна имеются только в мелких артериях и прекапиллярных сфинктерах, типичных артериол малый круг не содержит. Лёгочные капилляры короче и шире системных, по строению они относятся к сплошным капиллярам, их площадь — 60—90 м2, проницаемость для воды и водорастворимых веществ небольшая. Давление в капиллярах лёгких равно 6—7 мм рт.ст., время пребывания эритроцита в капилляре — 0,3—1 с. Скорость кровотока в капиллярах зависит от фазы работы сердца: в систоле кровоток интенсивнее, чем в диастоле. Вены и венулы, как и артерии, содержат мало гладкомышечных элементов и легко растяжимы. В них также прослеживаются пульсовые колебания кровотока.

Базальный тонус лёгочных сосудов незначителен, поэтому адаптация их к увеличению кровотока является чисто физическим процессом, связанным с высокой их растяжимостью. Минутный объём кровотока может возрасти в 3—4 раза без существенного повышения среднего давления и зависит от венозного притока из большого круга кровообращения. Так, при переходе от глубокого вдоха к выдоху объём крови в лёгких может снизиться от 800 до 200 мл. Кровоток в разных частях лёгкого также зависит от положения тела.

На кровоток в капиллярах, оплетающих альвеолы, влияет и альвеолярное давление. Капилляры во всех тканях, кроме лёгких, представляют собой туннели в геле, защищенные от сдавливающих влияний. В лёгких же со стороны полости альвеол отсутствуют такие демпфирующие влияния межклеточной среды на капилляры, поэтому колебания альвеолярного давления во время вдоха и выдоха вызывают синхронные изменения давления и скорости капиллярного кровотока. При наполнении лёгких воздухом при избыточном давлении во время искусственной вентиляции лёгких кровоток в большинстве лёгочных зон может прекратиться.

 

Коронарные сосуды

Коронарные артерии берут начало в устье аорты, левая кровоснабжает левый желудочек и левое предсердие, частично — межжелудочковую перегородку, правая — правое предсердие и правый желудочек, часть межжелудочковой перегородки и заднюю стенку левого желудочка. У верхушки сердца веточки разных артерий проникают внутрь и снабжают кровью внутренние слои миокарда и сосочковые мышцы; коллатерали между ветвями правой и левой коронарных артерий развиты слабо. Венозная кровь из бассейна левой коронарной артерии оттекает в венозный синус (80—85 % крови), а затем в правое предсердие; 10—15 % венозной крови поступает через вены Тебезия в правый желудочек. Кровь из бассейна правой коронарной артерии оттекает через передние сердечные вены в правое предсердие. В покое через коронарные артерии человека протекает 200—250 мл крови в минуту, что составляет около 4-6 % минутного выброса сердца.

Плотность капиллярной сети миокарда в 3—4 раза больше, чем в скелетной мышце, и равна 3500—4000 капилляров в 1 мм3, а общая площадь диффузионной поверхности капилляров составляет здесь 20 м2. Это создаёт хорошие условия для транспорта кислорода к миоцитам. Сердце потребляет в покое 25—30 мл кислорода в минуту, что составляет примерно 10 % от общего потребления кислорода организмом. В покое используется половина диффузионной площади капилляров сердца (это больше, чем в других тканях), 50 % капилляров не функционирует, находится в резерве. Коронарный кровоток в покое составляет четверть от максимального, т.е. имеется резерв увеличения кровотока в 4 раза. Это увеличение происходит не только за счёт использования резервных капилляров, но также в связи с повышением линейной скорости кровотока.

Кровоснабжение миокарда зависит от фазы сердечного цикла, при этом на кровоток влияют два фактора: напряжение миокарда, сдавливающее артериальные сосуды, и давление крови в аорте, создающее движущую силу коронарного кровотока. В начале систолы (в период напряжения) кровоток в левой коронарной артерии полностью прекращается в результате механических препятствий (ветви артерии пережимаются сокращающейся мышцей), а в фазе изгнания кровоток частично восстанавливается благодаря высокому давлению крови в аорте, противодействующему сдавливающей сосуды механической силе. В правом желудочке кровоток в фазе напряжения страдает незначительно. В диастоле и покое коронарный кровоток возрастает пропорционально проделанной в систоле работе по перемещению объема крови против сил давления; этому способствует и хорошая растяжимость коронарных артерий. Увеличение кровотока приводит к накоплению энергетических резервов (АТФ и креатинфосфата) и депонированию кислорода миоглобином; эти резервы используются во время систолы, когда приток кислорода ограничен.

 

Головной мозг

Снабжается кровью из бассейна внутренних сонных и позвоночных артерий, которые образуют у основания мозга виллизиев круг. От него отходят шесть церебральных ветвей, идущих к коре, подкорке и среднему мозгу. Продолговатый мозг, мост, мозжечок и затылочные доли коры большого мозга снабжаются кровью от базилярной артерии, образующейся при слиянии позвоночных артерий. Венулы и мелкие вены ткани мозга не обладают ёмкостной функцией, так как, находясь в веществе мозга, заключённом в костную полость, они нерастяжимы. Венозная кровь оттекает от мозга по яремной вене и ряду венозных сплетений, связанных с верхней полой веной.

Мозг капилляризован на единицу объема ткани примерно так же, как сердечная мышца, но резервных капилляров в мозге мало, в покое функционируют практически все капилляры. Поэтому увеличение кровотока в микрососудах мозга связывают с повышением линейной скорости кровотока, которая может возрастать в 2 раза. Капилляры мозга относятся по строению к соматическому (сплошному) типу с низкой проницаемостью для воды и водорастворимых веществ; это создаёт гематоэнцефалический барьер. Липофильные вещества, кислород и углекислый газ легко диффундируют через всю поверхность капилляров, а кислород — даже через стенку артериол. Высокая проницаемость капилляров для таких жирорастворимых веществ, как этиловый спирт, эфир и др., может создавать их концентрации, при которых не только нарушается работа нейронов, но и происходит их разрушение. Водорастворимые вещества, необходимые для работы нейронов (глюкоза, аминокислоты), транспортируются из крови в ЦНС через эндотелий капилляров специальными переносчиками согласно градиенту концентрации (облегченной диффузией). Многие циркулирующие в крови органические соединения, например катехоламины и серотонин, не проникают через гематоэнцефалический барьер, так как разрушаются специфическими ферментными системами эндотелия капилляров. Благодаря избирательной проницаемости барьера в мозге создается свой собственный состав внутренней среды.

Энергетические потребности мозга высоки и в целом относительно постоянны. Мозг человека потребляет примерно 20 % всей энергии, расходуемой организмом в покое, хотя масса мозга составляет лишь 2 % массы тела. Энергия затрачивается на химическую работу синтеза различных органических соединений и на работу насосов по переносу ионов вопреки градиенту концентрации. В связи с этим для нормального функционирования мозга исключительное значение имеет постоянство его кровотока. Любое не связанное с функцией мозга изменение его кровоснабжения может нарушить нормальную деятельность нейронов. Так, полное прекращение притока крови к мозгу через 8—12 с ведет к потере сознания, а спустя 5—7 мин в коре больших полушарий начинают развиваться необратимые явления, через 8—12 мин погибают многие нейроны коры.

Кровоток через сосуды головного мозга у человека в покое равен 50—60 мл/мин на 100 г ткани, в сером веществе — приблизительно 100 мл/мин на 100 г, в белом — меньше: 20—25 мл/мин на 100 г. Мозговой кровоток в целом составляет примерно 15% от минутного выброса сердца. Мозгу свойственна хорошая миогенная и метаболическая ауторегуляция кровотока. Ауторегуляция мозгового кровотока заключается в способности церебральных артериол увеличивать свой диаметр в ответ на снижение давления крови и, наоборот, уменьшать свой просвет в ответ на его повышение, благодаря чему локальный мозговой кровоток остаётся практически постоянным при измененениях системного артериального давления от 50 до 160 мм рт.ст. Экспериментально показано, что в основе механизма ауторегуляции лежит способность церебральных артериол поддерживать постоянство натяжения собственных стенок. (По закону Лапласа натяжение стенки равно произведению радиуса сосуда на внутрисосудистое давление).

 

 

 

 

 

 

 

Литература

Фундаментальная и клиническая физиология / Под ред. А.Камкина и А. Каменского-М.: Academia, 2004.- 1080 с.

Александрин В.В.Связь миогенной реакции с ауторегуляцией мозгового кровотока //Бюллетень экспериментальной биологии и медицины.-2010.-том 150.-№8.

Физиология человека / под редакцией профессора В. М. Смирнова — 1-е издание. — М.: Медицина, 2002. — 608 с.

 

 


Информация о работе Гемодинамика