Геометрическая оптика

Автор работы: Пользователь скрыл имя, 06 Апреля 2013 в 16:38, реферат

Описание работы

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.
Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

Содержание работы

Введение
Геометрическая оптика…………………………....…3
Глава 1. Основные законы оптических явлений………………....….4
Глава 2. Идеальные оптические системы.………………………….…8
Глава 3. Составляющие оптических систем..……………………........9
Глава 4. Современные оптические системы……………………….....11
Глава 5. Оптические системы, вооружающие глаз……………….…14
Глава 6. Применение оптических систем в науке и технике….......17
Заключение…………………………………………………….…19
Список литературы……………………………………...……...21

Файлы: 1 файл

Реферат по физике.doc

— 133.50 Кб (Скачать файл)

РГАУ-МСХА имени К.А. Тимирязева


Кафедра физики

 

 

 

 

 

 

 

 

 

 

 

 

 

Реферат

На тему:

«Геометрическая оптика»

 

 

 

 

 

 

 

 

 

 

 

 

\

 

 

 

 

 

 

Москва-2012

 

Содержание

 

      Введение

        Геометрическая оптика…………………………....…3

    Глава 1. Основные законы оптических явлений………………....….4

    Глава 2. Идеальные оптические системы.………………………….…8

    Глава 3. Составляющие оптических систем..……………………........9

Глава 4. Современные оптические системы……………………….....11

Глава 5. Оптические системы, вооружающие глаз……………….…14

Глава 6. Применение оптических систем  в науке и технике….......17

Заключение…………………………………………………….…19

Список литературы……………………………………...……...21

 

 

Введение.

 

        Оптика - раздел физики, в котором изучается природа оптического

излучения (света), его  распространение и явления, наблюдаемые при

взаимодействии света  и вещества. Оптическое излучение  представляет собой

электромагнитные волны, и поэтому оптика - часть общего учения об

электромагнитном поле.

Геометрическая  оптика


 

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченныйпучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет местодифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

 

Глава 1. Основные законы оптических явлений

 

1.1 Закон прямолинейного распространения света. 

 

В прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком. Также закон прямолинейного распространения света позволяет объяснить, как возникают солнечные и лунные затмения

 

 

 

 

1.2    Закон независимого распространения лучей

Второй закон геометрической оптики, который утверждает, что световые лучи распространяются независимо друг от друга. Так, например, при установке непрозрачного экрана на пути пучка световых лучей экранируется (исключается) из состава пучка некоторая его часть. Однако, по свойству независимости необходимо считать, что действие лучей оставшихся незаэкранированными от этого не изменится.

То есть предполагается, что лучи не влияют друг на друга, и распространяются так, как будто других лучей, кроме рассматриваемого, не существует.

 

    1. Закон отражения света.  

Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

 

 Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает обинтенсивности отражённого света.

Сдвиг Фёдорова

Сдвиг Фёдорова — явление малого (меньше длины волны) бокового смещения луча света с круговой или эллиптической поляризацией при полном внутреннем отражении. В результате смещения отражённый луч не лежит в одной плоскости с падающим лучом, как это декларирует закон отражения света геометрической оптики.

Явление теоретически предсказано Ф. И. Фёдоровым в 1954 году, позже обнаружено экспериментально.

Механизм отражения


В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла. Световые волны, падающие на диэлектрик вызывают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях (как антенна-диполь). Все эти волны складываются и в соответствии с принципом Гюйгенса — Френеля дают зеркальное отражение и преломление. При попадании электромагнитной волны на проводящую поверхность возникают колебания электронов (электрический ток), электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

В зависимости от резонансной  частоты колебательных контуров в молекулярной структуре вещества при отражении излучается волна  определённой частоты (определённого  цвета). Так предметы приобретают  цвет. Хотя цвет объекта определяется не только свойствами отражённого света.

Виды отражения


Отражение света может  быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное отражение

Зеркальное отражение  света отличает определённая связь  положений падающего и отражённого  лучей: 1) отражённый луч лежит в  плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от j и поляризации падающего пучка лучей, а также от соотношения показателей преломления nи n2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражаютформулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

 

 

В важном частном случае нормального  падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

Полное внутреннее отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения  , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного — падает (их сумма равна интенсивности падающего луча). При некотором критическом значении  интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления равным 90°:

Диффузное отражение света

При отражении света  от неровной поверхности отраженные лучи расходятся в разные стороны. По этой причине нельзя увидеть свое отражение, глядя на шероховатую (матовую) поверхность. Диффузным отражение  становится при неровностях поверхности порядка длины волны и более. Таким образом, одна и та же поверхность может быть матовой, диффузно-отражающей для видимого или ультрафиолетового излучения, но гладкой и зеркально-отражающей дляинфракрасного излучения.

    1. Закон преломления света.   

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления γ есть величина, постоянная для двух данных сред:


Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

n = n2/n1.


Закон преломления света  находит объяснение в волновой физике. Согласно волновым представлениям, преломление  является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υк скорости их распространения во второй средеυ2:


Абсолютный показатель преломления равен отношению  скорости света c в вакууме к скорости света υ в среде:


 

 

Глава 2. Идеальные оптические системы

Гаусс (1841 г.) дал общую  теорию оптических систем, получившу дальнейшее развитие в трудах многих математиков и физиков. Теория Гаусса есть теория идеальной оптической, системы, т.е. системы,

в которой сохраняется  гомоцентричность пучков и изображение  геометрически подобно предмету. Согласно этому определению всякой точке пространства объектов соответствует в идеальной системе точка пространства изображений ; эти точки носят название сопряженных. Точно так же каждой прямой или плоскости пространства объектов должна соответствовать сопряженная прямая или плоскость пространства изображений. Таким образом, теория идеальной оптической системы есть чисто геометрическая теория, устанавливающая соотношение между точками, линиями , плоскостями.

Идеальная оптическая система  может быть осуществлена с достаточным приближением в виде центрированной оптической системы , если ограничиться областью вблизи оси симметрии, т.е. параксиальными пучками. В теории Гаусса требование «тонкости» системы отпадает , но лучи по-прежнему предполагаются параксиальными. Разыскание оптической системы , которая приближалась бы к идеальной даже при пучках значительного раскрытия, есть такая задача прикладной геометрической оптики.

Линия, соединяющая центры сферических поверхностей , представляет собой ось симметрии центрированной системы и называется главной оптической осью системы. Теория Гаусса устанавливает ряд так называемых точек и плоскостей, задание которых полностью описывает все свойства оптической системы и позволяет пользоваться ею , не рассматривая реального хода лучей в системе.

 

Глава 3. Составляющие оптических систем.

 

Реальные оптические системы дают удовлетворительное изображение  только при известном ограничении ширины действующих пучков лучей. Но даже и для идеальных систем, которые могли бы давать правильные изображения плоского предмета при любом угле раскрытия пучков, их ограничение имеет существенное значение.

 

3.1 Диафрагмы  и их роль в оптических системах.

 

       Диафрагма – непрозрачная преграда , ограничивающая поперечное сечение световых пучков в оптических системах (в телескопах, дальномерах , микроскопах, кино- и фотоаппаратах и т.д.). роль диафрагм часто играют оправы линз, призм, зеркал, и других оптических деталей, зрачок глаза, границы освещенного предмета, в спектроскопах – щели.

Любая оптическая система  – глаз вооруженный и невооруженный,

фотографический аппарат, проекционный аппарат – в конечном счете рисует изображение на плоскости (экран, фотопластинка, сетчатка глаза); объекты же в большинстве случаев трёхмерны. Однако даже  идеальная оптическая система, не будучи ограниченной, не давала бы изображений трехмерного объекта на плоскости. Действительно, отдельные точки трехмерного объекта находятся на различных расстояниях от оптической системы, и им соответствуют различные сопряженные плоскости.

Информация о работе Геометрическая оптика