Исследование методов и устройств компенсации реактивной мощности при электроснабжении нелинейных и резкопеременных нагрузок

Автор работы: Пользователь скрыл имя, 27 Февраля 2014 в 12:42, курсовая работа

Описание работы

Вопросы экономного использования всех видов энергии, в том числе электрической, и повышения экономичности работы электроустановок являются важной государственной проблемой.
Электроэнергия, как особый вид продукции, обладает определенными характеристиками, позволяющими судить о ее пригодности в различных производственных процессах. Совокупность таких характеристик, при которых приемники электроэнергии способны выполнять заложенные в них функции, объединены под общим понятием качества электроэнергии.

Содержание работы

Введение
1. Исследование методов и устройств компенсации реактивной мощности при электроснабжении нелинейных и резкопеременных нагрузок
1.1 Реактивная составляющая – неотъемлемая часть потребляемой из сети энергии
1.2 Принципы компенсации реактивной мощности
1.3 Влияние преобразовательных установок на сети промышленного электроснабжения
1.4 Компенсация реактивной мощности в системах электроснабжения преобразовательных установок
1.4.1 Технические трудности, возникающие при использовании конденсаторных батарей для компенсации реактивной мощности
1.4.2 Особенности компенсации реактивной мощности в сетях со специфическими нагрузками
1.4.3 Статические тиристорные компенсаторы реактивной мощности
1.4.4 Разработанные устройства для компенсации реактивноймощности
1.4.5 Статические тиристорные компенсаторы реактивной мощности, выпускаемые отечественной промышленностью
2. Устройство компенсации реактивной мощности
2.1 Разработка и обоснование алгоритма функционирования и структурной схемы проектируемого устройства
2.2 Обоснование функциональной и принципиальной схем блока проектируемого устройства
3. Технико-экономическое обоснование
3.1 Планирование заработной платы на предприятии
3.2 Определение годового экономического эффекта от внедрения проектируемого устройства
4. Охрана труда
4.1 Электробезопасность
4.2 Расчет защитного заземления
Заключение
Список литературы

Файлы: 1 файл

СОДЕРЖАНИЕ 1111.docx

— 821.98 Кб (Скачать файл)

После подачи питания на проектируемое устройство производится проверка напряжения в системе. Если величина напряжения не находится в пределах, заданных как норма, то выполняется диагностика функционирования системы. Если Uпит = 0, то осуществляется повторная подача питания в систему, а если же Uпит ¹ 0, то после вывода результатов диагностики устройство отключается от сети для проверки исправности функционирования блоков системы.

Если напряжение в системе не выходит за рамки нормируемой величины, то проводится контрольное тестирование элементов системы регулирования реактивной мощности, и в случае удовлетворительных результатов тестирования выполняется контроль параметров сети электроснабжения.

Если результаты тестирования окажутся неудовлетворительными, или же в сети обнаружится короткое замыкание, то после вывода результатов тестирования устройство отключается от сети.

После того, как тестирование системы и контроль параметров сети дадут удовлетворительные результаты (т.е. покажут, что устройство компенсации реактивной мощности работает не в аварийном режиме), производится ввод задающих воздействий на систему. Вводятся предельное значение напряжения и требуемое значение коэффициента мощности в системе электроснабжения.

Теперь устройство готово для выполнения своей основной задачи – компенсации реактивной мощности в системе электроснабжения.

Регулирование реактивной мощности, генерируемой в сеть, производится за счет изменения угла управления тиристоров a. При этом изменяется величина и длительность протекания тока через компенсирующие реакторы, т.е. потребление компенсирующими реакторами реактивной мощности при постоянстве реактивной мощности, генерируемой конденсаторными установками фильтров.

Работа устройства происходит следующим образом.

Измеряются мгновенные значения тока и напряжения в сети, и вычисляется фактическое значение коэффициента мощности в сети, которое сравнивается с заданным ранее требуемым значением.

Если фактическое значение коэффициента мощности равно (с учетом зоны нечувствительности) заданному значению cos j, то устройство не изменяет величину генерируемой в сеть реактивной мощности, а возвращается к контролю параметров сети для обнаружения возможного аварийного режима работы устройства или изменения величины потребляемой в сети реактивной мощности.

Когда же окажется, что фактическое значение cos j отлично от заданного, вырабатывается напряжение управления Uупр для блока управления системы импульсно-фазового управления (СИФУ) тиристорами. В СИФУ происходит формирование опорных напряжений и сравнение Uупр и Uоп. И, наконец, моменты переключения компараторов СИФУ преобразуются в импульсы управления тиристорами. Импульсы, подаваемые на тиристоры, смещены относительно моментов естественного отпирания тиристоров на угол a, значение которого зависит от величины Uупр.

Если значение угла управления a находится в разрешенных пределах, то формируемые СИФУ импульсы управления тиристорами изменяют интервал проводимости тиристоров и, соответственно, величину генерируемой в сеть реактивной мощности проектируемым устройством.

Если в результате регулирования реактивной мощности фактическое значение напряжения в сети превысит заданное граничное, то формируется управляющий сигнал нелинейного регулятора реактивной мощности. Приводится в действие нелинейный регулятор, чем снижается величина напряжения в сети до допустимого значения (не допускается перенапряжение в системе электроснабжения), даже если это достигается ценой уменьшения фактического значения коэффициента мощности в сети.

Разрабатываемый алгоритм должен позволять отключать устройство от сети не только в случае возникновения сбоев, перегрузок, аварийных режимов, но и по требованию потребителя. Для этого производится проверка наличия оснований для отключения устройства по требованию пользователя. Если с пульта управления компенсатором реактивной мощности поступила команда на отключение, то система производит тестирование устройства, выводит результаты тестирования в виде, удобном для пользователя, и отключает устройство от сети.

В том случае, когда команда на отключение не поступает, устройство продолжает циклически функционировать по описанному выше алгоритму.

На основании этих требований составляем алгоритм функционирования проектируемого устройства, блок-схема которого приведена на рисунке 35.

По составленному алгоритму функционирования синтезируем структурную схему проектируемого устройства, реализующую алгоритм.

Устройство содержит пульт оператора, позволяющий задавать значения напряжения, реактивной мощности и коэффициента мощности в сети в ручном или автоматическом режиме. Это осуществляется через соответствующие блоки задания.

Устройство содержит также блок дистанционного задания, с помощью которого можно установить требуемые значения контролируемых параметров сети электроснабжения предприятия, на котором устанавливается разрабатываемое устройство, используя ЭВМ.

Эти структурные элементы устройства на схеме объединены в блок задания предельного напряжения и cos j в электросети.

В разработанном устройстве для управления тиристорами, входящими в тиристорно-реакторную группу, применяется система импульсно-фазового управления. СИФУ осуществляется генерация отпирающих импульсов для тиристоров, смещение их по фазе относительно питающего напряжения силовой схемы.

Она позволяет преобразовать выходное напряжение блока управления Uупр в последовательность подаваемых на тиристоры отпирающих импульсов, момент формирования которых смещен относительно моментов естественного отпирания тиристоров на угол a, зависящий от значения Uупр.

В систему импульсно-фазового управления вводится опорное напряжение, взятое от источника, питающего силовую схему. Генерация отпирающего импульса для тиристора происходит на одном из фронтов соответствующего опорного напряжения в момент совпадения опорного с управляющим напряжением. При изменении управляющего напряжения импульс сдвигается относительно опорного и, следовательно, относительно напряжения силовой схемы.

При смещении отпирающих импульсов изменяется интервал времени, в течение которого через реактор, входящий в тиристорно-реакторную группу, протекает ток, изменяется среднее значение напряжения на реакторе. Следовательно, изменяется значение потребляемой реактором реактивной мощности.

Таким образом осуществляется регулирование коэффициента мощности и компенсация реактивной мощности в системе электроснабжения.

В работе используется синхронная многоканальная система импульсно-фазового управления, т.е. СИФУ, в которой выполняется отсчет угла a от моментов естественного отпирания для встречно-параллельно включенных тиристоров каждой фазы.

Система импульсно-фазового управления состоит из узла формирования опорных напряжений, компараторов, сравнивающих напряжение управления Uупр и опорные напряжения Uоп, узлов, преобразующих моменты переключения компараторов в импульсы управления тиристорами, узлов ограничения диапазона изменения угла a и выходных усилителей.

Под действием изменения времени проводимости тиристоров устройства изменяется генерируемая в сеть реактивная мощность, изменяются также значения напряжений и токов в сети.

Устройство содержит блоки измерения мгновенных значений тока и напряжения сети и узел определения фактического значения коэффициента мощности.

Эти блоки необходимы для определения фактического значения реактивной мощности в сети с целью подачи информационно-управляющих импульсов в блок управления компенсатора реактивной мощности.

В составе устройства предусмотрен блок формирования нелинейного закона регулирования реактивной мощности, который в случае появления в сети перенапряжений посылает в блок управления информационные импульсы, призванные исключить работу сети в аварийном режиме.

На основании изложенного составляем структурную схему. Структурная схема проектируемого устройства приведена на рисунке 36.

 

2.2 Обоснование функциональной  и принципиальной схем блока  проектируемого устройства

В данном разделе разработаем функциональную схему части проектируемого устройства компенсации реактивной мощности – системы импульсно-фазового управления встречно-параллельно включенными тиристорами, входящими в тиристорно-реакторную группу компенсатора реактивной мощности.

Система импульсно-фазового управления имеет следующие технические данные:

максимальное входное напряжение, В, – 10

входной ток, мА, не более

напряжение синхронизации с питающей сетью трехфазное, В80

температурный дрейф характеристики при изменении

температуры от 1 до 40 °С, %, не более

диапазон изменения угла a, град – 170

асимметрия импульсов отдельных каналов, град,±3

Система импульсно-фазового управления гальванически отделена от силовой части проектируемого устройства.

Применяемая в данной работе система импульсно-фазового управления имеет следующие особенности: косинусоидальное опорное напряжение, шестиканальное устройство фазосмещения.

Работа системы импульсно-фазового управления происходит следующим образом.

Трехфазная система напряжений из сети поступает на фильтр, который обеспечивает формирование опорных напряжений AF, BF, CF, сдвинутых на 60°. Эти напряжения используются в формирователях, обеспечивающих получение сигналов А0, В0, С0, служащих для ограничения угла amin, и сигналов Аm, Вm, Сm, служащих для ограничения угла amax.

Блок сравнения, на вход которого поступают напряжение управления Uупр, напряжение смещения Uo и опорные напряжения AF, BF, CF, выдает напряжения AS, -AS, BS, -BS, CS, -CS. Эти напряжения положительны, когда напряжение управления меньше опорного напряжения.

Напряжения ограничения угла amax (Аm, Вm, Сm), amin (А0, В0, С0), выходные напряжения блока сравнения (AS, -AS, BS, -BS, CS, -CS) поступают на формирователи, с выходов которых снимаются сигналы A', -A', B', -B', C', -C'. Моменты появления этих сигналов совпадают с моментами равенства Uупр и Uoп для каждой из фаз (при условии, что amin<a<amax).

Из этих сигналов преобразователем кодов формируются сигналы A, B, C, -A, -B, -C, моменты появления которых соответствуют углу a. С выхода кодопреобразователя сигналы поступают на выходные усилители, которые формируют последовательность импульсов, подаваемых на тиристоры.

На рисунке 37 приведены диаграммы напряжений в СИФУ.

Функциональная схема системы импульсно-фазового управления показана на рисунке 38.

Система импульсно-фазового управления выполнена с широким использованием операционных усилителей серии К544УД2, логических интегральных микросхем серии КР1533.

Микросхема К544УД2 представляет собой быстродействующий операционный усилитель. Его схема имеет внутреннюю частотную коррекцию.

ИМС серии КР1533 – это маломощные быстродействующие интегральные микросхемы, предназначенные для организации высокоскоростного обмена и обработки информации, временного и электрического согласования сигналов в вычислительных системах. Микросхемы серии КР1533 по сравнению с другими сериями ТТЛ-микросхем обладают минимальным значением произведения быстродействия на рассеиваемую мощность. Микросхемы изготавливаются по усовершенствованной эпитаксиально-планарной технологии с диодами Шоттки.

СИФУ состоит из узла формирования опорных напряжений, узлов формирования логических сигналов, служащих для ограничения углов amin и amax, узла фазосмещения, узлов формирования диапазонов, кодопреобразователя и выходных усилителей.

Узел формирования опорных напряжений включает в себя трансформатор с двумя группами вторичных обмоток, которые можно включать по схемам звезды или треугольника, и ячейку фильтра с тремя каналами апериодических фильтров, обеспечивающих фазовый сдвиг на 60°.

На рисунке 39 изображена схема фильтра, служащего для формирования опорного напряжения фазы А – напряжения АF. Схемы формирователей других фаз аналогичны.

На рисунке 39: R1 – переменное сопротивление, предназначенное для выбора параметров фильтра, R1 = 10 кОм.

R2 = 22 кОм, R3 = 5,1 кОм, R4 = 12 кОм, R5 = 10 кОм. Емкость конденсатора в  цепи обратной связи ОУ: С1 = 0,33 мкФ.

Опорное напряжение, которое формируется этим узлом, необходимо в работе системы управления тиристорами для привязки импульсов отпирания к питающей сети.

На рисунке 40 показан узел формирования логических сигналов, служащих для ограничения угла amin.

Этот узел служит для формирования логических сигналов А0, В0, С0, которые имеют длительность 180о и предназначены для ограничения угла amin.

На рисунке 40 R1 и R8 – переменные сопротивления: R1 = R8 = 10 кОм. Номиналы других сопротивлений: R2 = R4 = R5 = 10 кОм, R3 = R6 = 5,1 кОм, R7 = 8,2кОм. Сопротивления R9 – R11 служат для ограничения тока, их номиналы: R9 = = R10 = R11 = 220 кОм. Емкости конденсаторов в цепях обратных связей операционных усилителей: С1 = С2 = 0,01 мкФ.

Узел состоит из компараторов А3–А5, микросхемы ключей DD1 К190КТ2П и формирователей напряжений смещения ±U1 на усилителях А1, А2.

На вход узла подаются опорные напряжения АF, ВF, СF, которые поступают на компараторы А3–А5. Когда на выходе компаратора напряжение имеет отрицательную полярность, один из ключей замкнут, и на вход связанного с этим ключом компаратора поступает выходное напряжение усилителя А1. Когда на выходе компаратора напряжение имеет положительную полярность, то на вход того же компаратора поступает выходное напряжение усилителя A2. При U1 = 0 разрешенный для формирования диапазон угла a начинается с a=30°, т. е. amin =30°. Если напряжение на выходе А2 больше нуля, то amin <30°.

Узел формирования логических сигналов Аm, Вm, Сm, служащих для ограничения угла amax, выполнен по той же схеме, что и узел ограничения amin, рассмотренный выше, но с другим порядком чередования фаз АF, ВF, СF.

Узел фазосмещения состоит из шести компараторов, на входе которых сравниваются напряжение управления Uупр, напряжение смещения Uo, обеспечивающее начальный угол управления при Uyпр = 0, и соответствующее опорное напряжение. При этом для тиристоров одной фазы анодной и катодной групп напряжение Uупр имеет противоположные знаки.

Информация о работе Исследование методов и устройств компенсации реактивной мощности при электроснабжении нелинейных и резкопеременных нагрузок