Источники энергии: история и современность

Автор работы: Пользователь скрыл имя, 05 Ноября 2014 в 09:54, научная работа

Описание работы

Данная работа является кратким, но обширным обзором современного состояния энергоресурсов человечества. В работе рассмотрена эволюция источников энергии, развитие энергетики, как отрасли народного хозяйства, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии), а именно солнечной и космической энергетики. Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии.

Файлы: 1 файл

нач раб.doc

— 222.50 Кб (Скачать файл)

      Тема:  Источники  энергии: история  и современность.

 

 

 

 

Введение

 

           Энергия - это основа основ. Все  блага цивилизации, все материальные  сферы деятельности человека - от  стирки белья до исследования  Луны и Марса - требуют расхода  энергии. И чем дальше, тем больше.

          Рождение энергетики произошло  несколько миллионов лет тому  назад, когда люди научились использовать  огонь.  Огонь давал им тепло  и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

           Прекрасный миф о Прометее, даровавшем  людям огонь, появился в Древней  Греции значительно позже того, как во многих частях света  были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

             Энергия – не только одно  из чаще всего обсуждаемых  сегодня понятий; помимо своего  основного физического  содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.

            Данная  работа является кратким, но обширным обзором современного  состояния энергоресурсов человечества. В работе рассмотрена эволюция  источников энергии, развитие энергетики, как отрасли народного хозяйства, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии), а именно солнечной и космической энергетики. Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии. К новым формам первичной энергии, рассмотренным в моей  работе в первую очередь относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра ,  энергия волн , а также очень перспективная космическая энегетика.   В отличие от ископаемых топлив эти формы энергии не ограничены геологически накопленными запасами (если атомную энергию рассматривать вместе с термоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

            Я считаю, что моя работа очень  актуальна в настоящий момент  времени, когда подходят к концу  топливные ресурсы нашей планеты. С помощью моей работы можно проанализировать, какие энергоресурсы использовало человечество на каком-либо этапе своего развития, и из этого сделать вывод, какие источники энергии наиболее перспективны. Перспективностью в настоящий момент я считаю не дешевизну самого источника энергии (двигателя, генератора), а доступность и большие запасы топлива для этого источника энергии.

            Человечеству нужна энергия, причем  потребности в ней увеличиваются  с каждым годом. Вместе с тем  запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива – водорода, однако управляемые термоядерные реакции пока не освоены и неизвестно, когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления. Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

      Современная цивилизация пока  не умеет эффективно получать  и преобразовывать энергию. Несовершенство  технологий и техники приводит  к прогрессирующему загрязнению  всех сфер окружающей среды  и к приближению глобальной экологической катастрофы. Наибольший экологический урон планете наносят энергетика и транспорт, в частности, космонавтика. Топлива на планете ограниченное количества, но его требуется для выработки требуемой энергии все больше. Вследствие низкой эффективности энергетики и транспорта возрастает и объем отравляющих токсичных веществ.

        Выход из энергетического и  экологического тупика состоит  в поиске и создании новой  экологически чистой энергетики  и качественно новых чистых  безотходных технологий получения и преобразования энергии. Лучший учитель для цивилизации - сама Природа, точнее, ее экологическое и энергетическое совершенство. По сути, человечество постоянно учится у Природы, потому что она совершенна. Сначала учились добывать огонь, а вот теперь учимся добывать чистую энергию и электричество. Так будет всегда. И чем более глубоко познается Природа планеты, тем больше возможностей открывается для создания более совершенных экологически чистых источников энергии, в частности, для космонавтики и не только для нее.

            Таким образом, главной целью  моей работы по выбранной теме  является изучение всех источников  энергии, применявшихся в тот  или иной период человеческой  истории, а также ознакомление  и изучение космической энергетики  и ее развитие.

 

 

1.  Эволюция  развития энергии.

 

          Развитие и совершенствование человека происходило невообразимо медленно. Ему в буквальном смысле слова приходилось ждать милостей от природы. Он был практически беззащитен перед холодом, ему непрестанно угрожали дикие звери, его жизнь постоянно висела на волоске. Но постепенно человек развился настолько, что сумел найти оружие, которое в сочетании со способностью мыслить и творить окончательно возвысило его над всем живым окружением. Сначала огонь добывали случайно – например, из горящих деревьев, в которые ударила молния, затем стали добывать сознательно: за счет трения друг о друга двух подходящих кусков дерева человек впервые зажег огонь 80–150 тысяч лет назад.

    После этого люди уже не отказывались от возможности использовать огонь в борьбе против суровых холодов и хищных зверей, для приготовления с трудом добытой пищи. Сколько ловкости, настойчивости, опыта да и просто везения это требовало! Представим себе человека, окруженного нетронутой природой – без построек, которые бы его защищали, без знания хотя бы элементарных физических законов, с запасом слов, не превышающим нескольких десятков.  К этому открытию человек шел очень долго и распространялось оно медленно, но ознаменовало собой один из важнейших переломных этапов в истории цивилизации.

         Шло время. Люди научились получать тепло, но не располагали никакой силой, кроме собственных мускулов, которая помогала бы им подчинить себе природу. И все же постепенно, мало-помалу они стали использовать силу прирученных животных, ветра и воды. По данным историков, первые тягловые животные была запряжены в плуг около 5000 лет назад.

       В истории человечества водяные  двигатели всегда играли особую  роль. На протяжении многих веков  водяные машины были главным источником энергии на производстве.

Первые водяные колёса появились ещё в древности. По конструкции они делились на два основных вида (см. ниже): нижнебойные (подливные) и верхнебойные (наливные). Нижнебойные водяные колёса были наиболее простым типом водяного двигателя. Они не требовали для себя строительства сложных гидротехнических сооружений, но в то же время имели самый низкий КПД, так как их работа основывалась на достаточно невыгодном принципе: подтекающая под колесо вода ударяла в лопатки, заставляя их вращаться. Работа верхнебойных колёс основывалась на использовании веса падающей воды.

     Однако потребовалась еще тысяча лет, прежде чем это изобретение получило распространение. А древнейшие из известных сегодня ветряных мельниц в Европа были построены в XI в.

       На протяжении столетий степень использования новых источников энергии - домашних животных, ветра и воды – оставалась очень низкой. Главным же источником энергии, при помощи которой человек строил жилье, обрабатывал поля, «путешествовал», защищался и нападал, служила сила его собственных рук и ног. И так продолжалось примерно до середины нашего тысячелетия.

       Правда, уже в 1470 г. был спущен на воду первый большой четырехмачтовый корабль; около 1500 г. гениальный Леонардо да Винчи предложил не только весьма остроумную модель ткацкого станка, но и проект сооружения летающей машины. Ему же принадлежат многие другие, для того времени просто фантастические идеи и замыслы, осуществление которых должно было способствовать расширению знаний и производительных сил. Но подлинный перелом в технической мысли человечества наступил сравнительно недавно, немногим более трех столетий назад.

      Одним из первых гигантов на пути научного прогресса человечества, несомненно, был Исаак Ньютон. Этот выдающийся английский естествоиспытатель всю свою долгую жизнь и незаурядный талант посвятил науке: физике, астрономии и математике. Он сформулировал основные законы классической механики, разработал теорию тяготения, заложил основы гидродинамики и акустики, в значительной мере способствовал развитию оптики, вместе с Лейбницем создал начала теории исчисления бесконечно малых и теории симметричных функций. Физику XVIII и XIX столетий по праву называют ньютоновской. Труды Исаака Ньютона во многом помогли умножить силу человеческих мускулов и творческие возможности человеческого мозга.

Вслед за кембриджскими исследованиями Ньютона в Лондоне в 1633 г. выходит книга «Сто примеров изобретений». Ее автором был мало кому известный сегодня лорд Эдвард Сомерсет (маркиз Вустер). Один из примеров, приведенных в этой книге под номером 68, настолько напоминает водяной насос с паровым приводом, что многие специалисты приписывают Сомерсету честь изобретения паровой машины.

       Промышленная революция – так мы часто называем эту эпоху великих открытий – существенно изменила течение жизни на нашей планете. Одним из ее последствий было окончательное падение феодализма, который уже не мог приспособиться к развитию новых производительных сил, и упрочение капиталистических производственных отношений. Джеймс Уатт изобрел паровую машину, которая раскрутила колесо истории до небывалых прежде оборотов.

       Паровую машину низкого давления Уатта совершенствовали многие мастера и инженеры. Среди них следует выделить американца Оливера Эванса. Преодолев многие препятствия, этот талантливый механик, полный энтузиазма и смелых идей, в 1801 г, приступил к сооружению малой паровой машины, в которой давление пара в десять раз превышало атмосферное. Уже первые две машины получились необычайно удачными, и в 1802 г. Эванс открыл в Филадельфии первый завод паровых машин высокого давления. Он поставил заказчикам до 50 машин мощностью от 7,4 до 29,4 кВт (10–40 л. с.).

В 1807 г. американский изобретатель Роберт Фултон сконструировал первый пароход «Клермонт», который совершал регулярные рейсы по реке Гудзон между Нью-Йорком и Олбани. Успех «Клермонта» оказался настолько убедительным, что в 1819 г. в США был спущен на воду морской пароход.

Английский техник Джордж Стефенсон в 1823 г. основал завод по изготовлению подвижного состава для общественного транспорта, и в 1825 г.– через шесть лет после смерти Уатта – на трассе Стоктон – Дарлингтон начала действовать первая железная дорога.

        В наши дни паровую машину скоро можно будет увидеть только в технических музеях, но и там мы будем смотреть на нее с уважением.

Итальянский физик Алессандро Вольта родился в 1745 г. Он продолжил эксперименты своего земляка Луиджи Гальвани и прославился изобретением электрической батареи (1800). В его честь мы называем основную единицу электрического напряжения вольтом. (В). Вольтову батарею–так называемый элемент–составляли два разных проводника электрического тока (электроды), погруженные в жидкость (электролит), через которую протекал электрический ток. В качестве электродов Вольта использовал медь и цинк, а электролитом служила соленая вода. Долгим и трудным был путь от этого первого источника постоянного тока до современной электрификации большей части нашей планеты. Остановимся на некоторых знаменательных событиях из истории электричества.

       Первым убедительным доказательством полезности вольтова элемента было изобретение электрического телеграфа, которое чаще всего приписывают немецкому врачу и натуралисту Самуэлю Земмерингу (1809). Через два года английскому физику и химику Гемфри Дэви удалось получить между двумя угольными электродами электрическую дугу–светящуюся струю электрически заряженных частиц необычайно высокой температуры. Дэви был автором и ряда других открытий в зарождающейся области науки–электрохимии, изучающей связь между электрическими и химическими процессами и явлениями.

Затем последовало множество открытий, связанных с магнитными свойствами электрического тока. Французский физик Андре Ампер стал основоположником новой науки – учения об электромагнетизме. Отсюда оставался один шаг до создания электродвигателя, Этот решающий шаг помогли сделать великий английский физик и химик, бывший ученик переплетчика Майкл Фарадей, немецкий физик, живший и работавший в России, Герман Якоби и многие другие известные и неизвестные механики, физики и химики. Первые электродвигатели работали от усовершенствованных вольтовых элементов. Они обладали малой мощностью и постепенно были вытеснены двигателями переменного тока. Для этого потребовалось создать новые источники такого тока – генераторы, а затем турбины, чтобы приводить их в движение.

     Путь к всеобщей электрификации проходил через множество крупных и мелких открытий и изобретений. Но это был логичный и целенаправленный путь. Электрическую энергию легко можно передавать на большие расстояния и непосредственно использовать для самых разнообразных целей. Все прежние машины и механизмы требовали «топлива», т. е. источника энергии, непосредственно на месте: паровая машина не в состоянии работать без достаточного количества топлива, ветряная мельница – без ветра, водяная мельница – без потока воды. А электрический двигатель работает и за сотни километров от источника потребляемой им энергии.

Информация о работе Источники энергии: история и современность