Автор работы: Пользователь скрыл имя, 19 Мая 2012 в 22:21, реферат
Гексафторид серы (также элегаз или шестифтористая сера, SF6) — неорганическое вещество, при нормальных условиях тяжёлый газ, в 5 раз тяжелее воздуха. Соединение было впервые получено и описано в 1900 году Анри Муассаном в ходе работ по изучению химии фтора.
1) Свойства элегаза
1.1) Физические свойства
1.2) Электротехнические свойства
2) Конструкция высоковольтного оборудования с использованием элегаза
2.1) Комплектное распределительное устройство с элегазовым наполнением
2.2) Высоковольтные выключатели
2.3) Выключатели нагрузки
2.4) Трансформаторы тока
2.5) Трансформаторы напряжения
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕСИТЕТ
Кафедра электротехники и электрооборудования предприятий
Реферат
Элегаз. Его свойства и применение.
По дисциплине Электрооборудование подстанций
промышленных предприятий
Выполнил: ст.гр. БАЭ-09 Хакимов Э.Ф.
Проверил: доц. Лопатин В.П.
Уфа 2012
Содержание:
1) Свойства элегаза
1.1) Физические свойства
1.2) Электротехнические свойства
2) Конструкция высоковольтного оборудования с использованием элегаза
2.1) Комплектное распределительное устройство с элегазовым наполнением
2.2) Высоковольтные выключатели
2.3) Выключатели нагрузки
2.4) Трансформаторы тока
2.5) Трансформаторы напряжения
1) Свойства элегаза
1.1) Физические свойства
Гексафторид серы (также элегаз или шестифт
В центре молекулы элегаза расположен атом серы, а на равном расстоянии от него в вершинах правильного октаэдра располагаются шесть атомов фтора.
Практически бесцветный газ, обладающий высоким (89кВ/см) пробивным напряжение
Плотность элегаза при T=273 K и давлении р=0,1 МПа составляет 6,56 кг/м³. Относительная диэлектрическая проницаемость — 1,0021.
Соединение распадается при температуре выше 1100 °С. Газообразные продукты распада элегаза ядовиты и обладают резким, специфическим запахом. Элегаз не поддерживает горения и дыхания, поэтому при накоплении его в производственных помещениях может возникнуть кислородная недостаточность. По ГОСТ 12.1.007-76 по степени воздействия на организм элегаз относится к 4 классу опасности, к которому принадлежат малоопасные вещества. Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны производных помещений 5000 мг/м3. Предельно допустимая концентрация в атмосферном воздухе - 0,001 мг/м3.
Элегаз безвреден в смеси с воздухом. Однако вследствие нарушения технологии производства элегаза или его разложения в аппарате под действием электрических разрядов (дугового, коронного, частичных), в элегазе могут возникать чрезвычайно активные в химическом отношении и вредные для человека примеси, а также различные твёрдые соединения, оседающие на стенах конструкции. Интенсивность образования таких примесей зависит от наличия в элегазе примесей кислорода и особенно паров воды.
Некоторое количество элегаза в электротехнической аппаратуре также разлагается в процессе нормальной работы. Например, коммутация тока 31,5 кА в выключателе 110 кВ приводит к разложению 5-7 см³ элегаза на 1 кДж выделяемой в дуге энергии.
1.2) Электротехнические свойства
Значительная диэлектрическая прочность элегаза (превышает аналогичный параметр воздуха примерно в 3 раза при равном атмосферном давлении) обеспечивает высокую степень изоляции при минимальных размерах и расстояниях. Это позволяет уменьшить массу и габариты электротехнического оборудования, а хорошая способность гашения дуги и охлаждаемость элегаза увеличивают отключающую способность коммутационных аппаратов и уменьшают нагрев токоведущих частей.
При увеличении давления электрическая прочность элегаза возрастает почти пропорционально давлению и может быть выше электрической прочности жидких и некоторых твердых диэлектриков.
Элегаз примерно в 100 раз эффективнее воздуха по своей дугогасительной способности. Также элегаз имеет высокую теплоемкость, благодаря чему может эффективно отводить энергию горения дуги, не допуская ее перегрева.
Особенность гашения дуги в элегазе заключается в том, что при токе, близком к нулевому значению, тонкий стержень дуги еще поддерживается и обрывается в последний момент перехода тока через нуль. К тому же после прохода тока через нуль остаточный столб дуги в элегазе интенсивно охлаждается, в том числе за счет еще большего увеличения теплоемкости плазмы при температурах порядка 2000 К, и электрическая прочность быстро увеличивается.Такая стабильность горения дуги в элегазе до минимальных значений тока при относительно низких температурах приводит к отсутствию срезов тока и больших перенапряжений при гашении дуги.
Характерным является очень большой коэффициент теплового расширения и высокая плотность. Это важно для энергетических установок, в которых проводится охлаждение каких-либо частей устройства, так как при большом коэффициенте теплового расширения легко образуется конвективный поток, уносящий тепло.
Применение элегаза позволяет при прочих равных условиях увеличить токовую нагрузку на 25% и допустимую температуру медных контактов до 90°С (в воздушной среде 75°С) благодаря химической стойкости, негорючести, пожаробезопасности и большей охлаждающей способности элегаза.
Элегаз не стареет, т. е. не меняет своих свойств с течением времени, при электрическом разряде распадается, но быстро рекомбинирует, восстанавливая первоначальную диэлектрическую прочность.
Стоимость элегаза достаточно высока, однако он нашёл достаточно широкое применение в технике, особенно в высоковольтной электротехнике. Он прежде всего используется как диэлектрик, то есть в качестве основной изоляции для комплектных распределительных устройств, высоковольтных измерительных трансформаторов тока и напряжения и др. Также элегаз используется как среда дугогашения в высоковольтных выключателях.
Основные преимущества элегаза перед его основным «конкурентом», трансформаторным маслом, это:
взрыво- и пожаробезопасность;
снижения массо-габаритных показателей конструкции за счёт уменьшения изоляционных промежутков и улучшенных условий охлаждения токоведущих частей.
Недостатком элегаза является переход его в жидкое состояние при сравнительно высоких температурах, что определяет дополнительные требования к температурному режиму элегазового оборудования в эксплуатации.
как изолятор и теплоноситель в высоковольтной электротехнике;
как технологическая среда в электронной и металлургической промышленности;
в системах газового пожаротушения в качестве пожаротушащего вещества;
как хладагент благодаря высокой теплоёмкости, низкой теплопроводности и низкой вязкости;
для изменения тембра голосовых связок (эффект пониженной тональности голоса), противоположно гелию;
для улучшения звукоизоляции в стеклопакетах;
в полупроводниковой промышленности для травления кремния.
2) Конструкция высоковольтного оборудования с использованием элегаза
2.1) КРУЭ(комплектное распределительное устройство с элегазовым наполнением)
КРУЭ - комплектное распределительное устройство с элегазовой изоляцией. Комплектные элегазовые распределительные устройства (КРУЭ) занимают лишь 5% территории, необходимой для обычных РУ с воздушной изоляцией. Поэтому их размещение особенно актуально в густонаселенных районах. КРУЭ поставляется укрупненными сборочными единицами, представляющими собой отдельные элементы такие как, выключатель, комбинированный разъединитель-заземлитель, заземлитель быстрого действия, трансформаторы напряжения и кабельные вводы. Все элементы КРУЭ изготавливаются из алюминия, это значительно снижает вес всего оборудования, что в конечном итоге позволяет отказаться от дорогостоящих фундаментов и грузоподъемных механизмов.
Ячейки КРУЭ выполняются, как правило, в трехфазном исполнении и состоят из отдельных элементов, заключенных в герметичную металлическую оболочку цилиндрической или шаровой формы, заполненной элегазом или смесью азота с элегазом. Для сочленения между собой оболочки элементов имеют фланцы и патрубки, контакты и уплотнения.
По функциональному назначению ячейки КРУЭ могут быть линейные, шиносоединительные, трансформаторов напряжения и секционные, с одной или двумя системами сборных шин. Ячейки состоят из трех полюсов, шкафов и сборных шин. В шкафах размещена аппаратура цепей сигнализации, блокировки, дистанционного электрического управления, контроля давления элегаза и подачи его в ячейку, питания приводов сжатым воздухом.
В полюс ячейки входят:
• коммутационные аппараты: выключатели, разъединители, заземлители;
• измерительные трансформаторы тока и напряжения;
• соединительные элементы: сборные шины, кабельные вводы («масло—элегаз»), проходные вводы («воздух—элегаз»), элегазовые токопроводы и др.
Различные элементы ячеек по конструкции, условиям эксплуатации, монтажу, ремонту газовой схемы могут быть объединены в отсеки, а по условиям транспортировки — в транспортные блоки. Ячейки или их транспортные блоки заполнены элегазом или азотом при небольшом избыточном давлении.
КРУЭ снабжаются вспомогательным оборудованием и приспособлениями, обеспечивающими их нормальное обслуживание.
Сферы применения:
• Распределительные и трансформаторные подстанции;
• Промышленные электроустановки: высотные здания, аэропорты, метро, очистительные установки, портовые сооружения, ж/д электроснабжение.
Преимущества:
• взрыво- и пожаробезопасность;
• возможность установки в сейсмически активных районах и зонах с повышенной загрязненностью;
• отсутствие электрических и магнитных полей;
• Модульная конструкция;
• Расширение КРУЭ без проведения работ с элегазом на месте;
• Необслуживаемый вакуумный силовой выключатель;
Эксплуатационная надёжность
Наличие герметичных цельносварных резервуаров из высококачественной нержавеющей немагнитной стали без каких-либо уплотнений, с устойчивой к перепадам давления и температуры конструкцией, использование изолирующего газа, сохраняющего изоляционные свойства на протяжении всего срока службы без необходимости очистки и дозаправки, применения закрытой пофазной изоляции токоведущих элементов вне резервуара, наличие простого и наглядного указателя готовности к эксплуатации.
Экономичность
•Сверхнизкие эксплуатационные затраты за весь срок службы:
• отсутствие необходимости в техническом обслуживании;
• независимость от климатических воздействия;
• минимально занимаемое пространство;
• максимальная готовность к работе.
• длительный срок службы
Безопасность персонала
• Первичные цепи в герметичной оболочке безопасны для прикосновений;
• ВВ-предохранители и концевые кабельные муфты доступны только при заземленных присоединениях;
• Управление возможно только при закрытом корпусе;
• Заземление присоединений через заземлители с возможностью включения на КЗ.
Безопасность в работе
• Герметичная оболочка для первичных цепей:
– не зависит от воздействий окружающей среды (грязь, влага)
– герметичность в течение всего срока службы (сварной резервуар, вваренные проходные изоляторы).
• Необслуживаемые компонены привода;
• Доступ к приводам коммутационных аппаратов вне резервуара с элегазом;
2.2) Высоковольтные выключатели
Выпускаемые в России выключатели элегазовые предназначены для коммутации электрических цепей при нормальных и аварийных режимах работы, а также для работы в стандартных циклах при автоматическом повторном включении (АПВ) в сетях трехфазного переменного тока частотой 50 и 60 Гц с номинальным напряжением зависящем от серии в широком диапазоне климатических условий: от -60 до +55°С.
Выключатели представляют собой трехполюсный аппарат, полюсы которого имеют одну (общую) раму и управляются одним приводом либо каждый из трех полюсов выключателей имеет собственную раму и управляется своим приводом.