Электрон- волна или частица

Автор работы: Пользователь скрыл имя, 17 Марта 2014 в 16:32, доклад

Описание работы

Приход квантовой физики перевернул науку с ног на голову: не только свет стали наделять корпускулярными свойствами, но и частицы материи начали считать волнами, запутав всё, как в стихотворении Чуковского. Действительно, нет более странного утверждения квантовой физики, чем гипотеза де Бройля, по которой всякую частицу надо одновременно рассматривать как волну, а волну — как частицу. Однако, учёные приняли сей парадоксальный тезис, нарушающий столь почитаемый ими принцип Оккама, по которому свет незачем рассматривать как частицу, если можно объяснить его свойства, считая свет волной, и не стоит считать электроны и атомы волнами, раз легко понять их свойства, как частиц. Впрочем, казалось, электроны в опытах проявляли и волновую природу, а свет — корпускулярную. Поэтому, теперь мало кто сомневается, что электроны обладают кроме корпускулярных ещё и волновыми свойствами. Помимо законов проводимости (§ 4.17) и эффекта туннелирования (§ 4.12), косвенно подтверждающих двойственную природу электрона, имеются будто бы и прямые доказательства наличия у него волновых свойств.

Файлы: 1 файл

доклад по ксе.doc

— 223.00 Кб (Скачать файл)

Такова квантомеханическая трактовка опыта Рамзауэра-Таунсенда, казалось бы, предельно ясная и убедительная. Но, на самом деле, — не всё так гладко.

Дело в том, что рассмотренный закон усиления рассеяния с падением скорости обоснован лишь для случая упругого рассеяния, то есть, — для рассеяния, при котором сумма кинетических энергий электрона и рассеивающего атома до и после соударения — одинакова: энергия удара не переходит во внутреннюю энергию атома. Поэтому, в учебниках специально оговаривается, что рассматривается только случай упругого соударения [82]. Но, в том-то и дело, что при энергиях порядка 10 эВ соударение уже близко к неупругому (§ 4.8).

Действительно, для каждого из газов энергия E1, начиная с которой возникает расхождение с классическим законом рассеяния, — лишь немногим меньше соответствующих энергий ионизации (Таблица 11). А, по другим данным, для аргона эти энергии и вовсе совпадают. Так, например, по учебнику А.Н. Матвеева [82] для аргона энергия наибольшего рассеяния составляет 16 эВ, что почти совпадает с энергией ионизации его атомов (15,7 эВ). Но тогда соударение становится уже неупругим: при такой энергии отдельные электроны, столкнувшись с атомом, уже не отскочат от него упруго, а потеряют скорость, отдав часть энергии на ионизацию атома, — на отрыв от него электрона.

Впрочем, столкновение становится неупругим ещё задолго до того, как энергия удара превысит энергию ионизации. Заметно меньше последней — энергия возбуждения атома (Таблица 11), — минимальная порция энергии, которую атом может поглотить. Только такая, но, — никак не меньшая, порция энергии способна перевести атом в возбуждённое состояние. Лишь электроны энергии E1, колеблющиеся при захвате атомом с частотой f=E1/h, способны войти в резонанс с собственной частотой колебаний внутренних электронов атома и, потому, легко отдают атому эту энергию E1, которая излучается в виде так называемой "первой резонансной спектральной линии атома". Существование такого порогового значения энергии было открыто в опыте Франка-Герца (§ 4.8), не менее простом и убедительном, чем опыт Рамзауэра-Таунсенда. Да и во многом другом эти опыты похожи.

И там, и там имелся источник и приёмник электронов с рассеивающей средой (парами металла или инертным газом) между ними. В обоих опытах измерялся процент долетевших до приёмника электронов — по созданному в нём току. И, так же, по мере увеличения скорости и энергии электронов, всё большая их часть должна была, благодаря уменьшению рассеяния, достигать приёмника: ток I приёмника должен был монотонно нарастать по мере роста энергии электронов (Рис. 165, пунктирная кривая).

Рис. 165. Зависимость тока I электронов от их энергии E в опыте Франка-Герца.

 

Однако, так же, как в опыте Рамзауэра, на экспериментальной кривой (Рис. 165, сплошная линия) возникали минимумы и максимумы: по достижении электронами определённой скорости, соответствующей некоторой энергии E0, число частиц, долетевших до приёмника, при дальнейшем росте скорости — переставало увеличиваться и начинало убывать. Лишь по достижении электронами следующего характерного значения скорости (и энергии E1), доля частиц, поглощённых приёмником, начинала снова расти. Объясняется опыт просто: пока скорости движения электронов малы, атомы рассеивают их упруго, почти не уменьшая их скорости при соударениях, поскольку атом гораздо массивней отскакивающих от него электронов.

Но, едва нарастающая энергия электрона превысит потенциал возбуждения атома E1 (и его первой резонансной линии), как последний отберёт энергию у частицы: энергия электронов сгорает, как при переборе в карточной игре «очко» (именно так в гелии набор электроном энергии большей 21 эВ, ведёт к её "сгоранию"). Электроны с такой энергией теряют скорость и не могут больше преодолеть запирающего поля. Если же электрон имеет заметно большую энергию, то, в зависимости от условий опыта, он либо теряет только часть её (равную резонансному потенциалу), либо совсем её не теряет (усовершенствованный опыт Герца). Вот почему, по мере дальнейшего роста энергии электрона, процент достигших приёмника частиц снова начнёт увеличиваться (Рис. 165).

Сходство опытов столь очевидно, что сразу обращает на себя внимание. В обоих опытах наблюдается, вопреки предсказанной зависимости (на Рис. 164 и Рис. 165 показана пунктиром), — резкое падение числа долетевших до приёмника электронов, которое минимизируется, при достижении ими энергии E1. Недаром, зависимости на Рис. 164 и Рис. 165 качественно являются зеркальным отражением друг друга, поскольку ?~1/I. То есть, в опыте Рамзауэра возникает так же зависимость тока электронов от энергии, что и на Рис. 165. Поэтому, опыт Рамзауэра-Таунсенда объясняется так же, как опыт Франка-Герца. Набрав определённую энергию, электроны перестают в столкновениях рассеиваться упруго, а разом отдают атомам накопленную энергию (равную энергии возбуждения, — резонансному потенциалу). При этом, скорость их падает, что ведёт к усилению рассеяния, снижающего процент долетевших до приёмника частиц. Тогда, на монотонно убывающей кривой рассеяния появляется своеобразный резонансный максимум, всплеск. Вот почему график (Рис. 164) так напоминает знакомую всем со школы резонансную кривую.

Таким образом, резонансный максимум и сопровождающий его минимум рассеяния должны наблюдаться в любом случае, независимо от природы электрона. О резонансном пике сечения рассеяния, приходящемся на энергию возбуждения, упоминается и в литературе по теории столкновений и рассеяния электронов на атомах. А, раз на графике (Рис. 164), кроме экстремумов, связанных с возбуждением атома, нет никаких других, то, выходит, ни к чему здесь привлекать дифракцию и волновые свойства электрона. Так что, результат опыта Рамзауэра-Таунсенда не может служить доказательством волновой природы электрона: этот опыт есть не более, чем видоизменённый опыт Франка-Герца.

Это подтверждается и значениями энергии максимумов рассеяния в опыте Рамзауэра, которые близки к энергиям возбуждения указанных газов (Таблица 11: энергии возбуждения атомов по книге [91, с. 44]). Из-за того, что резонансный пик кривой рассеяния по разным причинам сильно размыт, минимум рассеяния может заметно отстоять от максимума, а энергия максимума — не точно совпадать с энергией возбуждения.

И вовсе не увеличением размеров атомов объясняется в опыте Рамзауэра уменьшение энергии E1 максимума рассеяния, а тем, что энергия возбуждения (и ионизации) постепенно убывает при переходе от гелия к ксенону. Если же размеры атомов, действительно, иногда оценивают по рассеянию и дифракции на них электронов, то, возможно, ошибочностью такой методики измерения и вызваны большие расхождения (иногда в 5 раз) значений атомных радиусов, найденных разными методами.

Итак, опыт Рамзауэра-Таунсенда не подтверждает волновых свойств электрона и должен быть исключён из соответствующих разделов учебников. Казалось бы, ничего страшного: просто в данном опыте проявляется, как и во многих других, не волновая, а только корпускулярная сторона двуликого электрона, зато в других дифракционных опытах волновые свойства этих, да и других частиц налицо. Но не всё так просто…

В опыте Рамзауэра, как и в опыте Франка-Герца, волновые свойства электрона, приводящие к уменьшению рассеяния, всё же должны проявляться, если и не при указанных, то при чуть меньших значениях энергий. Но в том-то и дело, что на зависимостях (Рис. 164 и Рис. 165), кроме обязательных колебаний рассеяния, связанных с возбуждением спектральных линий и ионизацией атомов, — больше нет никаких других. Получается, что опыт Рамзауэра не только не подтверждает волновой природы электрона, но даже опровергает её.

Вдобавок, ошибочная волновая трактовка опыта Рамзауэра, вошедшая в учебники, подрывает доверие к волновому объяснению и всех остальных опытов по интерференции или дифракции электронов и других частиц. Как увидим, все эти опыты можно объяснить рационально, без привлечения волновых свойств частиц. Выходит, реально нет никакого корпускулярно-волнового дуализма, и учёные ожидаемое — принимают за действительное. Просто результаты опытов по интерференции электронов, как и результаты опыта Рамзауэра, были настолько необычны, казались столь противоречащими классическим представлениям, что волновая природа электрона была в них признана безоговорочно, и не было попыток дать опытам альтернативное объяснение. А, между тем, видим, что такое объяснение может быть найдено, его следует поискать. Не зря, даже Эйнштейн и Планк, которых никто не обвинит в слепой приверженности классическим взглядам, работами которых и было положено начало квантовой физике, до конца своих дней отрицали квантовую механику и индетерминизм явлений микромира, утверждая, что невозможно для частицы быть одновременно волной, а для волны — частицей. И многие другие физики верили, что со временем в каждом из случаев выживет только одна модель, которая объяснит как волновые, так и корпускулярные свойства частиц или волн. Эту точку зрения самоотверженно защищал и А.Г. Столетов

 


Информация о работе Электрон- волна или частица