Автор работы: Пользователь скрыл имя, 19 Апреля 2013 в 12:35, реферат
Основной характеристикой, определяющей способность тела (частицы) участвовать в электромагнитном взаимодействии, является электрический заряд. Осуществляется взаимодействие между частицами посредством электромагнитного поля. Таким образом, основной физической системой, которая изучается в электродинамике, является система, состоящая из заряженных частиц и электромагнитного поля, взаимодействующих между собой – заряженные частицы являются источниками поля и испытывают воздействие со стороны поля.
Введение…………………………………………………………………………...3
1. Предыстория открытия. Открытие электрона……………………………...4-6
2. Электрический заряд…………………………………………………………7-8
3. Электрический заряд элементарной частицы ………………………………..9
4. Единица измерения электрического заряда .………………………………..10
5. Электрометр ……………………………………………………………… 11-12
6. Закон сохранения электрического заряда…………………………………...13
7. Электризация тела ………………………………………………………...14-17
Заключение…………………………………………………………………...18-19
Список литературы……………………………………………………………..20
Содержание
Введение…………………………………………………………
1. Предыстория открытия. Открытие электрона……………………………...4-6
2. Электрический заряд…………………………………………………………7-8
3. Электрический заряд элементарной частицы ………………………………..9
4. Единица измерения электрического заряда .………………………………..10
5. Электрометр ……………………………………………………………… 11-12
6. Закон сохранения электрического заряда…………………………………...13
7. Электризация тела ………………………………………………………...14-17
Заключение……………………………………………………
Список литературы…………………………………
Введение
Основной характеристикой, определяющей способность тела (частицы) участвовать в электромагнитном взаимодействии, является электрический заряд. Осуществляется взаимодействие между частицами посредством электромагнитного поля. Таким образом, основной физической системой, которая изучается в электродинамике, является система, состоящая из заряженных частиц и электромагнитного поля, взаимодействующих между собой – заряженные частицы являются источниками поля и испытывают воздействие со стороны поля.
Весьма примечательным является факт, что электрические заряды всех относительно стабильных заряженных элементарных частиц равны друг другу по модулю. Это позволило ввести понятие элементарного заряда (е). До настоящего времени не обнаружено способных существовать обособленно элементарных частиц с зарядом, не кратным элементарному (имеются основания полагать, что сами элементарные частицы "составлены" из "субчастиц" - кварков, заряды которых кратны e/3, однако до сих пор свободные кварки в экспериментах не обнаружены). Величина заряда любого макроскопического тела определяется разностью составляющих его положительных и отрицательных частиц и, разумеется, кратна элементарному заряду. Говорят, что электрический заряд дискретен.
Существование элементарного заряда делает привлекательным выбор такой системы единиц, в которой он равнялся бы единице. Однако, по историческим причинам и из соображений удобства ведения технических расчетов в качестве единицы заряда была выбрана другая, гораздо большая величина (единица заряда в системе Си превосходит элементарный в раз, в системе Гаусса заряд выбирается так, чтобы коэффициент в законе Кулона (2) равнялся 1).
1. Предыстория открытия
Открытие электрона явилось результатом многочисленных экспериментов. К началу XX в. существование электрона было установлено в целом ряде независимых экспериментов. Но, несмотря на колоссальный экспериментальный материал, накопленный целыми национальными школами, электрон оставался гипотетической частицей, ибо опыт еще не ответил на ряд фундаментальных вопросов. В действительности "открытие" электрона растянулось более чем на полстолетия и не завершилось в 1897 году; в нем принимало участие множество ученых и изобретателей.
Прежде всего не было ни одного опыта, в котором участвовали бы отдельные электроны. Элементарный заряд вычислялся на основании измерений микроскопического заряда в предположении справедливости ряда гипотез.
Неопределенность была в принципиально важном пункте. Сначала электрон появился как результат атомистического истолкования законов электролиза, затем он был обнаружен в газовом разряде. Было не ясно, имеет ли физика в действительности дело с одним и тем же объектом. Большая группа скептически настроенных естествоиспытателей считала, что элементарный заряд представляет собой статистическое среднее зарядов самой разнообразной величины. Тем более что ни один из опытов по измерению заряда электрона не давал строго повторяющихся значений.
Были скептики, которые вообще игнорировали открытие электрона. Академик А.Ф. Иоффе в воспоминаниях о своем учителе В.К. Рентгене писал: «До 1906 -- 1907 гг. слово электрон не должно было произноситься в физическом институте Мюнхенского университета. Рентген считал его недоказанной гипотезой, применяемой часто без достаточных оснований и без нужды».
Не был решен вопрос о массе электрона, не доказано, что и на проводниках, и на диэлектриках заряды состоят из электронов. Понятие «электрон» не имело однозначного толкования, ибо эксперимент не раскрыл еще структуры атома (планетарная модель Резерфорда появится в 1911 г., а теория Бора -- в 1913г.).
Электрон не вошел
еще и в теоретические
Электрон еще не вышел из рамок «чистой» науки. Напомним, что первая электронная лампа появилась только в 1907 г. Для перехода от веры к убеждению необходимо было прежде всего изолировать электрон, изобрести метод непосредственного и точного измерения элементарного заряда.
Решение этой задачи не заставило себя ждать. В 1752 г была впервые высказана мысль о дискретности электрического заряда Б. Франклином. Экспериментально дискретность зарядов была обоснована законами электролиза, открытыми М. Фарадеем в 1834 г. Числовое значение элементарного заряда ( наименьшего электрического заряда, встречающегося в природе ) было теоретически вычислено на основании законов электролиза с использованием числа Авогадро. Прямое экспериментальное измерение элементарного заряда было выполнено Р. Милликеном в классических опытах, выполненных в 1908 - 1916 гг. Эти опыты дали также неопровержимое доказательство атомизма электричества. Согласно основным представлениям электронной теории заряд какого-либо тела возникает в результате изменения содержащегося в нём количества электронов ( или положительных ионов, величина заряда которых кратна заряду электрона ). Поэтому заряд любого тела должен изменяться скачкообразно и такими порциями, которые содержат целое число зарядов электрона. Установив на опыте дискретный характер изменения электрического заряда, Р. Милликен смог получить подтверждение существования электронов и определить величину заряда одного электрона ( элементарный заряд ) используя метод масляных капель. В основу метода положено изучение движения заряженных капелек масла в однородном электрическом поле известной напряжённости Е .
Открытие электрона
Если отвлечься от того, что предшествовало открытию первой элементарной частицы - электрона, и от того, что сопутствовало этому выдающемуся событию, можно сказать кратко: в 1897 году известный английский физик Томсон Джозеф Джон (1856-1940 гг.) измерил удельный заряд q/m катодно-лучевых частиц - "корпускул", как он их назвал, по отклонению катодных лучей в электрическом и магнитном полях .
Из сопоставления полученного числа с известным в то время удельным зарядом одновалентного иона водорода, путем косвенных рассуждений он пришел к выводу, что масса этих частиц, получивших позднее название "электроны", значительно меньше (более чем в тысячу раз) массы самого легкого иона водорода.
В том же, 1897 году он выдвинул гипотезу, что электроны являются составной частью атомов, а катодные лучи - не атомы или не электромагнитное излучение, как считали некоторые исследователи свойств лучей. Томсон писал: "Таким образом, катодные лучи представляют собой новое состояние вещества, существенно отличное от обычного газообразного состояния...; в этом новом состоянии материя представляет собой вещество, из которого построены все элементы".
С 1897 года корпускулярная модель катодных лучей стала завоевывать общее признание, хотя о природе электричества были самые разнообразные суждения. Так, немецкий физик Э.Вихерт считал, что "электричество есть нечто воображаемое, существующее реально только в мыслях", а известный английский физик лорд Кельвин в том же, 1897 году писал об электричестве как о некой "непрерывной жидкости".
Мысль Томсона о катодно-лучевых корпускулах как об основных компонентах атома не была встречена с большим энтузиазмом. Некоторые его коллеги решили, что он мистифицировал их, когда высказал предположение о том, что частицы катодных лучей следует рассматривать как возможные компоненты атома. Истинная роль томсоновских корпускул в структуре атома могла быть понята в сочетании с результатами других исследований, в частности, с результатами анализа спектров и изучения радиоактивности.
29 апреля 1897 года Томсон
сделал свое знаменитое
Место открытия точно известно - Кавендишская лаборатория (Кембридж, Великобритания). Созданная в 1870 году Дж.К.Максвеллом, в последующие сто лет она стала "колыбелью" целой цепи блестящих открытий в различных областях физики, особенно в атомной и ядерной. Директорами её были: Максвелл Дж.К. - с 1871 по 1879 год, лорд Рэлей - с 1879 по 1884 год, Томсон Дж.Дж. - с 1884 по 1919 год, Резерфорд Э. - с 1919 по 1937 год, Брэгг Л. - с 1938 по 1953; заместителем директора в 1923-1935 годах - Чэдвик Дж.
Научные экспериментальные исследования проводилось одним ученым или небольшой группой в атмосфере творческого поиска. Лоурэнс Брэгг вспоминал впоследствии о своей работе в 1913 году вместе с отцом, Генри Брэггом: "Это было замечательное время, когда новые захватывающие результаты получали почти каждую неделю, подобно открытию новых золотоносных районов, где самородки можно подбирать прямо с земли. Это продолжалось вплоть до начала войны, прекратившей нашу совместную работу".
2. Электрический заряд
Дать краткое, удовлетворительное во всех отношениях определение заряда невозможно. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т.д. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.
Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют электрический заряд.
Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число, раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 1039 раз превышающей силу гравитационного притяжения.
Рис. 1
Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.
Взаимодействия между заряженными частицами носят название электромагнитных. Когда мы говорим, что электроны и протоны электрически заряжены, то это означает, что они способны к взаимодействиям определенного типа (электромагнитным), и ничего более. Отсутствие заряда у частиц означает, что подобных взаимодействий она не обнаруживает. Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий. Электрический заряд – вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире.
Таким образом
Электрический заряд – это физическая скалярная величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.
Электрический заряд обозначается буквами q или Q.
Подобно тому, как в механике часто используется понятие материальной точки, позволяющее значительно упростить решение многих задач, при изучении взаимодействия зарядов эффективным оказывается представление о точечном заряде. Точечный заряд – это такое заряженное тело, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и других заряженных тел. В частности, если говорят о взаимодействии двух точечных зарядов, то тем самым предполагают, что расстояние между двумя рассматриваемыми заряженными телами значительно больше их линейных размеров.