Колебания и волны

Автор работы: Пользователь скрыл имя, 17 Апреля 2013 в 00:35, реферат

Описание работы

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости. Таким свойством повторяемости обладают, например, качания маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника и т. п.
В зависимости от физической природы повторяющегося процесса, различают колебания: механические, электромагнитные, электромеханические и т. д. В данном реферате рассматриваются механические колебания.

Содержание работы

Введение. 3
Колебания. 4
Периодическое движение 4
Свободные колебания 4
Маятник. Кинематика его колебаний 4
Гармоническое колебание. Частота 5
Динамика гармонических колебаний 6
Превращение энергии при свободных колебаниях 6
Период 7
Сдвиг фаз 8
Вынужденные колебания 8
Резонанс 8
Волны. 9
Поперечные волны в шнуре 9
Продольные волны в столбе воздуха 10
Звуковые колебания 11
Музыкальный тон. Громкость и высота тона 11
Акустический резонанс 12
Шумы 12
Волны на поверхности жидкости 13
Скорость распространения волн 14
Отражение волн 15
Перенос энергии волнами 16
Применение 17
Акустический динамик и микрофон 17
Эхолот 17
Ультразвуковая диагностика 18
Примеры задач по физике 18
Заключение 21
Список используемой литературы 22

Файлы: 1 файл

koleb.doc

— 350.00 Кб (Скачать файл)

вниз, заполняя центральную ямку и  образуя вокруг нее кольцевое  углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем края кольца частицы всегда «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т.д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.

Следует заметить, что в образования  поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения, которая,  как и сила тяжести, стремится выровнять поверхность  жидкости. При прохождении волны  в каждой точки поверхности жидкости происходит деформация этой поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде тем больше, чем больше искривлена поверхность, т.е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (низких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности жидкости и соответственного ей поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около 1 см, т.е. для более коротких волн (называемых капиллярными волнами) преобладают силы поверхностного натяжения, а для более длинных  - сила тяжести.

Несмотря на сложный «продольно-поперечный»  характер поверхностных волн, они  подчиняются закономерностям, общим  для всякого волнового процесса.

 

 

 

 

 


 

Ударяя концом проволоки по поверхности  воды, мы заставим бежать по воде систему кольцевых гребней и впадин, Расстояние между соседними гребнями и впадинами , т.е. длина

волны, связано с периодом ударов Т уже известной формулой .

 

Если ударять ребром линейки, параллельным поверхности воды, то можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных

 

 

 

 

 

гребней и впадин. В этом случае перед частью линейки мы имеем  одно-единственное направление распространения.

Кольцевые и прямолинейные волны  на поверхности дают представление  о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все  стороны, создает вокруг себя сферическую  волну, в которой сжатия и разрежения воздуха расположены  в виде концентрических шаровых слоев.

Скорость распространения волн

В том, что распространение волн происходит не мгновенно, нас убеждают простейшие наблюдения. Постепенно и  равномерно расширяются круги на воде и бегут морские  волны.

Здесь мы непосредственно видим, что  распространение колебаний из одного места в другое занимает определенное время. Но и для звуковых волн, которые  в обычных условиях не видимы, легко  обнаруживается тоже самое. Если в дали происходит выстрел, гроза, взрыв, свисток паровоза и т.д., то мы сначала видим эти явления и лишь спустя известное время

слышим звук. Чем дальше от нас  источник звука, тем больше запоздание. Промежуток времени между вспышкой молнии и ударом грома может доходить иногда до нескольких десятков секунд. Зная расстояние от источника звука, и измерив запаздывание звука, можно определить скорость его распространения. Вспышку, произведенную на расстоянии 3 км, мы видим с запаздыванием всего на 10 мкс, в то время как звук тратит на пробег этого расстояния около 9 с. В сухом воздухе при температуре 10 ’C  эта скорость оказалась равной 337,5 м/с.(1215 км/ч)

Скорость звуковых волн весьма различна для разных сред и, кроме того, зависит  от температуры. Современные методы позволяют произвести точные измерения скорости звука, пользуясь малыми количествами исследуемого вещества.

 

Отражение волн

Поставим на пути волн в водяной  ванне плоскую пластинку, длина  которой велика по сравнению с  длиной волны  . Мы увидим следующие. Позади пластинки получается область, в которой поверхность воды остается почти в покое. Другими словами, пластинка создает тень –

пространство, куда волны не проникают. Перед пластинкой отчетливо видно, как волны отражаются от нее, т.е. волны, падающие на пластинку, создают волны, идущие от пластинки.

 

 

 

Эти отражения волны имеют прежних  волн. Перед пластинкой возникает  своеобразная сетка из

первичных волн, падающих на пластинку, и отраженных, идущих от нее навстречу  падающим.

Отражение плоских волн.

Обозначим угол, образуемый перпендикуляром  к плоскости нашей пластинки  и направлением распространения  падающей волны, через  , а угол, образуемый тем же перпендикуляром и направлением распространения отраженной волны, - через . Опыт показывает, что при всяком положении пластинки , т.е. угол отражения волны от отражающей плоскости равен углу падения.

Этот закон является общим волновым законом, т.е. он справедлив для любых волн, в том числе и для звуковых и световых. Закон остается в силе и для сферических (или кольцевых) волн. Здесь угол отражения в разных точках отражающей плоскости различен, но в каждой точке равен углу падения .

Отражение волн от препятствий относятся  к числу очень распространенных явлений. Хорошо всем известное эхо  обусловлено отражением звуковых волн от зданий, холмов, леса и т.п. Если до нас доходят звуковые волны, последовательно  отразившиеся от ряда препятствий, то получается многократное эхо. Методы локации основаны на отражении электромагнитных волн и упругих волн от препятствий. Особенно часто мы наблюдаем явление отражения на световых волнах.

Отраженная волн всегда в той  или иной степени ослаблена по сравнению с падающей. Часть энергии падающей волны поглощается тем телом, от поверхности которого происходит отражение.

 

Перенос энергии волнами

Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Распространение волны создает в среде поток энергии, расходящийся от источника.

При встрече волны с различного рода телами переносимая энергия  может произвести работу или превратится  в другие виды энергии.

Яркий пример такого переноса энергии  без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места взрыва, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т.п., т.е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну, мощность которой, т.е. энергия, излучаемая в 1 с, составляет 10-10 Вт.

Энергия, излучаемая точечным источником, равномерно распространяется по всей поверхности волновой среды. Нетрудно видеть, что энергия, приходящиеся на единицу поверхности этой сферы, будет тем меньше, чем больше радиус сферы. Площадь сферы или любого вырезанного в ней конусом участка растет пропорционально квадрату радиуса, т.е. при увеличении расстояния от источника вдвое площадь увеличивается вчетверо, и на каждую единицу поверхности сферы приходится вчетверо меньшая энергия волны.

Энергию, переносимую волной через  сечение, площадь   которого равна 1 м2, за время, равное   1 с, т.е. мощность, переносимую через единичное сечение, называют интенсивностью волны. Таким образом, интенсивность сферической волны убывает обратно пропорционально квадрату расстояния от источника.

                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Применение.

 

Областью применения колебаний  и волн служат многие изобретения человека: от музыкальных инструментов и акустических динамиков до эхолотов и ультразвуковых диагностических аппаратов . С тремя последними мы и познакомимся.

Акустический динамик и микрофон

 

Принцип преобразования  электрических  сигналов  в звуковые волны, лежит в основе акустического динамика. Рассмотрим такой динамик поподробнее.

Электрические сигналы поступают  на обмотку, которая создает магнитное  поле. Магнитное поле попеременно  то притягивает обмотку к магниту, то отталкивает. Переменные колебания обмотки вызывают соответствующие колебания конуса динамика. Если колебания находятся в интервале от 20 Гц до 20000 Гц, то мы будем слышать звук.

На том же принципе, только в  обратном порядке, лежит принцип  микрофона: звуковые волны определенной частоты создают колебания мембраны с той же частотой, а потом посредством магнита, колебания мембраны превращаются в электрические сигналы.

Эхолот.

 

Если скорость распространения  волн известна, то измерение их запаздывания позволяет решить обратную задачу: найти пройденное ими расстояние, то есть расстояние до источника этой волны. Так, например, с помощью ультразвука (с ним мы познакомимся ниже) можно сканировать морское дно, то есть измерять глубину морского дна, исследовать дно на наличие затонувших кораблей, и, искать косяки рыб. Причем все эти три функции может выполнять один прибор. Такой прибор называется эхолотом.

Эхолот испускает ультразвук, этот звук отражается от поверхности какого-либо тела (дна, например), и возвращается к своему источнику (эхолоту). Поскольку звук прошел двойное расстояние (до морского дна и обратно), то, чтобы найти это расстояние, надо скорость распространения волны в данной среде умножить на время запаздывания. Половина полученной величины и будет искомым расстоянием до объекта.

На принципе измерения времени  запаздывания основана гидроакустическая  локация. Гидролокаторы позволяют, например, обнаруживать с надводных  кораблей подводные лодки и, наоборот, с подводных лодок надводные  корабли

Измеряя разности между временами  прихода какого-либо звука (взрыва, выстрела) в три различных пункта наблюдения, можно определить местонахождение  источника этого звука. Такой  способ называется звукометрией, применяется  в военном деле для засечки  артиллерийских батарей. 

 

 

 

 

Ультразвуковая диагностика.

 

Ультразвук – это механические колебания высокой частоты (более 20 000 Гц). Такие колебания  человеческий слух не воспринимает. В ультразвуковой диагностике обычно применяют частоты  от 2 до 20 МГц. Датчик состоит из одного или нескольких пьезоэлектрических элементов, которые превращают акустические и механические колебания в электрические и обратно. Его прикладывают к поверхности кожи, на которую нанесен слой геля, обеспечивающего хороший акустический контакт. Электрический сигнал, подаваемый на датчик, преобразуется им в механические колебания, они и распространяются вглубь тканей. На границах тканями волны преломляются и отражаются, создавая эхо сигнал, возвращающийся к датчику. Там он вновь превращается в электрический и после обработки формирует изображение внутренних органов пациента на экране монитора.

Ультразвуковой аппарат, соединенный  с компьютером, - это уже ультразвуковой томограф. Во многих случаях он может  успешно заменить рентгеновский  томограф и, в отличие от последнего, не оказывают вредного воздействия на организм.

 

 

 

 

 

Примеры задач по физике

 

 

 

 

Как изменится точность хода маятниковых часов за сутки, если их с экватора перенести на полюс?

                  


                   Вначале следует уточнить, как изменится ход часов. Так как  на                                       полюсе   притяжение слабее, то часы уйдут вперед. Тогда


                                   -  разность хода часов за время


           - разность хода часов за одну секунду

                   Тогда

                  

                 и будет ответом задачи. Теперь найдем

                 

                   и ответом будет, как несложно  убедится t = 3 мин 45 с.

 

 

 

На веревке висит  ведро с водой и раскачивается. В дне ведра находится отверстие, через которое вода постепенно сливается. Будет ли изменяться период колебаний, если принять систему за математический маятник?

 

С первого взгляда может показаться, что период не изменится, но

                                                   

Где L – не длинна нити, а расстояние от точки подвеса до центра тяжести, а центр тяжести будет смещаться по мере вытекания воды, а, следовательно, и будет изменяться и период колебания этой системы.

 

 

 

 

 

 

 

 

 

 

За одно и то же время  один математический маятник делает 50, а второй – 30 колебаний. Найти их длины, если один из них на 32 см короче другого.

 

 

 

 


                         Прежде всего, определим, какой из маятников длиннее. Очевидно, это тот,

                       который делает меньшее число колебаний, то есть второй маятник. Тогда

                      

         Из условия   t1= t2

           


                                     

                                            

Учитывая, что 

нетрудно получить

Поперечная  волна распространяется вдоль упругого шнура со скоростью 15 м/с. Период колебания точек шнура 1,2 с, амплитуда колебания 2 см.Определить длину волны и смещение точки через 4 с.


                            По определению, длинна волны

Информация о работе Колебания и волны